Programmable Control Products

Archive
Document

This electronic manual was created by scanning a
printed document, then processing the file using
character-recognition software.

Please be aware that this process may have
introduced minor errors. For critical applications,
use of a printed manual is recommended.

Series One™
Programmable Controllers
ASCII/BASIC Module

User’s Manual

GFK-0249A March, 1989

FANUC

GE Fanuc Automation

Programmable Control Products

Series One™
Programmable Controllers
ASCII/BASIC Module

User's Manual

GFK-0249A March, 1989

WARNINGS, CAUTIONS, AND NOTES AS USED IN THIS PUBLICATION

WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures,

or other conditions that could cause personal injury exist in this equipment or may be associated with its
use.

In simations where inattention could cause either personal injury or damage to equipment, a Warning
notice is used.

CAUTION

Cantion notices are used where equipment might be damaged if care is not taken.

NOTE

Notes merely call attention to information that is especially significant to understanding and operating the
equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate,
the information contained berein does not purport to cover all details or variations in hardware and software, nor to provide
for every possible contingency in connection with installation, operation, and maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to
bolders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no

responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties
of merchantability or fimess for purpose shall apply.

Portions of this manual reprinted by permission of Intel Corporation, Copyright 1988, 1989

©Copyright 1989 GE Fanuc Automation North America, Inc.
All Rights Reserved.

iii - Preface
GFK-0249

The ASCI/BASIC Module for the Series One™ family of Programmable Logic Controllers is a
compact, highly reliable single-slot module that can be used in either a Series One or Series One Plus
Programmable Logic Controller (PLC). The ASCI/BASIC Module under control of the resident
BASIC programming language, and with appropriate ladder logic, can exchange information with the
PLC. This information can be the status of any Input or Output point, or internal reference which can be
transferred to the ASCII/BASIC Module from the Series One or Series One Plus PLC. Additionally, the
contents of a register can be transferred to the Series One Plus PLC from the ASCII/BASIC Module.
With appropriate programming, the ASCII/BASIC Module can instruct the Series One PLC to read or
change the status of any output point or any register.

Using this Manual

Chapters 1 through S describe the features of the ASCII/BASIC Module, including information on how
to create, edit, and store programs. Chapters 6 through 12 provide a reference to the BASIC program-
ming functions resident in the module. The BASIC language for the ASCI/BASIC Module is
Inte]l®MCS® BASIC-52 with additional custom commands created by GE Fanuc - NA.

The organization of the manual, including chapter titles and content, is as follows:

Chapter 1. Introduction: Provides an overview of the ASCII/BASIC Module for the Series One™
family of PLC’s. Included are a descripdon of the module’s features and functons.

Chapter 2. Installation and Configuration: This is a description of instaliation and configuration
requirements for the ASCII/BASIC Module. Included are lists of programming func-
tions, including the custom commands created by GE Fanuc - NA. The end of this
chapter provides troubleshooting information in case you should experience any hard-
ware problems.

Chapter 3. Creating and Storing BASIC Programs: This chapter provides information on recom-
mended methods for creating and storing your BASIC programs. Included are hints for

documenting, programming, and debugging BASIC programs.

Chapter 4. ABMHelper: This chapter provides the information required to use ABMHelper when
developing your BASIC programs. ABMHelper is a program developed by GE Fanuc -
NA to operate with the ASCII/BASIC Module. It provides terminal emulation capability,
archival storage of BASIC programs using your computer’s disk storage facilities, and
provides a full screen editor to use when creating and editing your BASIC programs. It is
designed to run under MS-DOS and an IBM compatible BASIC interpreter - either
BASICA or GWBASIC. It should work satisfactorily with most IBM-PC and compatible
computer systems. The ABMHelper program is available on a distribution diskette
(catalog number IC641PBES04) and must be ordered as a separate line item.

Chapter 5. W-ED Editor: This chapter describes the use of the W-ED editor, which is the BASIC
editor supplied with the ASCII/BASIC Module. W-ED is a full function text editor that
can be used to develop BASIC programs for the ASCII/BASIC Module. It can also be
used as a general text editor for other programming purposes.

Chapter 6. Commands: This chapter provides a description and examples of the commands available
for BASIC programming, including the GE Fanuc - NA custom BASIC commands.

Chapter 7. Archival Storage Area File Commands: This chapter describes a group of commands
that are used to access or store programs to cither RAM or the Archival Storage Area
(ASA) in the ASCII/BASIC Module.

@®Registered Trademark of Intel corporation

iv Preface

GFK-0249

Chapter 8. Statements: Descriptions of how to use Statements, and examples of using them in your
BASIC program are provided in this chapter.

Chapter 9. Operators and Expressions: The use of Operators and Expressions to be used when
programming mathematical operations into your BASIC programs are described in this
chapter. An example of a line of code using each Operator or Command is included.

Chapter 10. String Operators: Descriptions and use of String Operators are provided in this chapter.

Chapter 11. Special Function Operators: A group of nine Special Function Operators is described in
this chapter. These instructions provide access to various system parameters such as the
real time clock and the frequency at which the system is operating.

Chapter 12. Error Messages: This chapter provides a list of error messages that may be generated
during the running of your BASIC program. A definition of each error message and the
reason that it was generated is included for information and reference.

Chapter 13. Application Examples: This chapter provides examples of creating BASIC programs and
ladder logic for transferring data to and from the ASCII/BASIC Module.

Appendix A. Quick Reference Tables of Commands, Statements, and Operators: This is a handy
reference to all of the BASIC instructions, including a brief description of their function.

Appendix B. Miscellaneous Programming Information: This Appendix contains information which
is intended to clarify and help you understand various aspects of creating BASIC pro-
grams using MCS BASIC-52.

Appendix C. Other Software Packages: This Appendix describes the use of a commercially available
terminal emulator package named VTERM, which can be used for transferring files
between an ASCII/BASIC Module and a diskette on a computer.

Appendix D. ASCII Code List: This Appendix is a list of the standard ASCII codes.

Related Publications

e GEK-90842 Series One™ and Series One Plus User’s Manual

e GEK-25373 Workmaster® Guide to Operation

e GFK-0075 Logicmaster™]1 Family Programming and Documentation Software User’s Manual
e GFK-0269 Series Five™ ASCI/BASIC Module User’s Manual

NOTE
For additional information relating to BASIC-52, the INTEL 8052AH microcontroller, or assem-

bly language programming, refer to the MCS BASIC-52 Users Manual (Order Number: 270010)
from Inte] Corporation.

Henry A. Konat
Senior Technical Writer

Preface v

GFK-0249

The Series One/Series One Plus PLC and associated modules have been tested and found to meet or
exceed the requirements of FCC Rule, Part 15, Subpart J. The following note is required to be published
by the FCC.

NOTE

This equipment generates, uses, and can radiate radio frequency energy and if not
installed in accordance with the instruction manual, may cause interference to radio
communications. It has been tested and found to comply with the limits of a Class
A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference when operated
in a commercial environment. Operation of this equipment in a residential area is
likely to cause interference, in which case the user at his own expense will be
required to take whatever measures may be required to correct the interference.

The following note is required to be published by the Canadian Department of Communications.

NOTE

This digital apparatus does not exceed the Class A limits for radio noise emissions
from digital apparatus set out in the radio interference regulations of the Canadian
Department of Communications.

vii

GFK-0249

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

INTRODUCTION

Function of the ASCII/BASIC Module
General Specifications
ASCI/BASIC Module Communications
ASCII/BASIC Module Configuration
BASIC Language

Modes of Operation for Memory Use
MCS BASIC-52 Reference Information

INSTALLATION AND CONFIGURATION

ASCII/BASIC Module Hardware Features
Starus Display
RS-232 Serial Communications Port
The RTS Signal -
DIP Switch Configuration
Run/Trap Mode
Memory Usage For Program Development
Expanded Mode of Operation
Partitioned Mode of Operation
Use of Keywords
Commands Used Only in Partitioned Mode
GE Fanuc - NA Custom BASIC Commands
Sign On Message
Commands, Statements, and Operators Not Supported
Troubleshooting the ASCII/BASIC Module
Troubleshooting Guide
Replacing the Lithium Battery

CREATING AND STORING BASIC PROGRAMS

Advantages of Using ABMHelper
SOURCE/NOSOURCE Configuration
NOSOURCE Mode of Operation

SOURCE Mode of Operation
SOURCE/NOSOURCE Sub Modes
*“‘Quick’> SOURCE Mode Editing
Configuring ABMHelper (Revision 1.02 and later)
Baud Rate Setup
Communications Port Setup
Time and Date Setup
Hints for Documenting BASIC Programs
General Programming/Debug Hints

ABMHELPER

Features of ABMHelper
System Requirements
Contents of the ABMHelper Distribution Diskette
Creating a Backup Distribution Diskette
Creating a Separate W-ED Editor Diskette

Contents

Pd P Pk pd Bed Pk ek
1
wawNNH

NNNNNNNNI'\)NNNNNNNN
= OO\OO0OOOO~INAANNOAO W W =

)
o

IO
W W N = -

U L L L

O\t v n

£ pp e
DR =

4-2

Creating a Workable ABMHelper Diskette (Floppy Disk

Based System)

H
w

viii Contents

GFK-0249

CHAPTER 4. ABMHELPER (cont)
Installing W-ED and ABMHelper on a Hard Disk System 4-3

Using ABMHelper 44
Running From Floppy Disk 44
ABMHelper Start-Up 4-5
Menu Option 1 - Terminal Mode 4-6
Menu Option 2 - Save Program to Disk 4-9
Menu Option 3 - Load a Program from Disk 4-9
Menu Option 4 - Merge a Disk File Into Program 4-9
Menu Option S - Delete a Range of Lines 4-9
Menu Option 6 - Directory of Disk Files 4-9
Menu Option 7 - Temporary Exit to DOS 4-10
Menu Option 8 - Set/View Time and Date 4-10
Menu Option 9 - Finished With ABMHelper 4-10
Using User-Supplied Routines with ABMHelper 4-10
Modifying ABMHelper for use with Fast Computers 4-11
Troubleshooting ABMHelper 4-12

CHAPTER 5. THE W-ED EDITOR
Editor Command Summary 5-1
Changing W-ED’s Configuration 5-1
A Quick Introduction to W-ED 5-2
Starting W-ED From DOS ' 5-2
W-ED Function Keys 5-3
Other W-ED Key Actions 5-3
5-3

W-ED Features -
Command Line and Text Area 5-4
Block or Cut and Paste Operations 54
Tabbing and Margins 54
Extended ASCII (Graphics) Characters 5-4
Printer Paging Control 5-5
Text Manipulation 5-5
W-ED Messages 5-6
CHAPTER 6. COMMANDS
Command: RUN(cr) 6-1
Command: CONT(cr) 6-1
Command: LIST(cr) 6-2
Command: NEW(cr) 6-3
Command: NULL [integer](cr) 6-3
Description of GE Fanuc - NA Custom Commands 6-3
Transfer Command: TRANSFER R/W, FORMAT,

ABMLOC, FLAG 6-4
Functions Used in RUN Mode 6-5
LSTR 6-6
SPLIT 6-6
MOVE 6-6
SWITCH 6-7
MATCH 6-7

INPB ’ 6-8

Contents

GFK-0249

CHAPTER 6.

CHAPTER 7.

CHAPTER 8.

CHAPTER 9.

COMMANDS (cont)

Commands Used in Command (Monitor) Mode
RENUM@
DELPRM

ARCHIVAL STORAGE AREA FILE COMMANDS

Commands: RAM(cr) and ROM (integer) (cr)
Command: XFER(cr)
Command: BURN(cr)

STATEMENTS

Statement: CLEAR

Statements: CLEARI and CLEARS
Statements: CLOCK1 and CLOCKO0
Statements: DATA - READ - RESTORE
Statement: DIM :

Statements: DO - UNTIL [rel expr]
Statements: DO - WHILE [rel expr]
Statement: END

Statements: FOR - TO - {STEP} - NEXT
Statements: GOSUB [In num] - RETURN
Statement: GOTO [In num]

Statements: ON [expr] GOSUB [In num],[In num], . . .
num] ON [expr] GOTO [In num],[In num], ...

(In num]
Statement: IF - THEN - ELSE
Statement: INPUT
Statement: LET
Statement: ONERR [In num)]
Statement: ONTIME [expr],[In num]
Statement: PRINT or P.
Special Print Formatting Statements
Statements: PHOQ., PH1.
Statement: PUSH [expr]
Statement: POP [var]
Statement: REM
Statement: RETI
Statement: STOP
Statement: STRING [expr],[expr]
Statement: IDLE
Statement: RROM (integer)
Statements: ST@ [expr] and LD@ [expr]

OPERATORS AND EXPRESSIONS

Dual Operand Operators

Single Operand Operators - General Purpose
Single Operand Operators - Log Functions
Single Operand Operators - Trig Functions
Precedence of Operators

How Relational Expressions Work

1 L L])
W N =

IN

\O 00 3 O\ O\ Wh

'
—

L} 1} L] Ii”mi”mm
Tt b e b e bt b b e
QWOWOWOOAAANPLA,WHOO

OOOOOOOOOOOOO'OOOOOOOOOOOOO
N

RERERS

CHAPTER 10.

CHAPTER 11.

CHAPTER 12.

CHAPTER 13.

APPENDIX A.
APPENDIX B.

APPENDIX C.

APPENDIX D.

STRING OPERATORS
ASC()
CHR()

SPECIAL FUNCTION OPERATORS
CBY([expr])
DBY([expr])
XBY([expr])
GET
TIME
XTAL
System Control Values

ERROR MESSAGES
BAD SYNTAX
BAD ARGUMENT
ARITH. UNDERFLOW
ARITH. OVERFLOW
DIVIDE BY ZERO
NO DATA
CAN’T CONTINUE
PROGRAMMING
A-STACK
I-STACK
ARRAY SIZE
MEMORY ALLOCATION

APPLICATION EXAMPLES
Example 1 - Transferring Data Between the ASCII/BASIC
Module and the Series One/One Plus CPU
Using the Transfer Command
Example of TRANSFER Command
Transferring Register Data
Example 2 - Sending Commands to an OIT

Commands, Statements, and Operators: Reference Tables

Miscellaneous Programming Information
Floating Point Format
Storage Allocation
Format of an MCS BASIC-52 Program

Other Software Packages
Using a Software Package Other Than ABMHelper

Transfer a Program from ASCI/BASIC Module Memory to
Diskette

Retrieve a Program on Diskette and Store to the
ASCII/BASIC Module

ASCI Code List

Contents

GFK-0249

101
102

11-1
11-1
11-1
11-1
11-2
11-3
11-3

121
121
121
12:2
122
122
122
122
122
122
123
123

131
131
131

i Figures
GFK-0249
Figure 1-1 Series One PLC ASCI/BASIC Module 1-1

2-1 RS-232 Communications Port Configuration 2-2
2-2 Location and Replacement of Lithium Battery 2-10

xii

GFK-0249

Table

2-1
22
2-3
24
2-5
4-1
4-2
4-3

5-2
5-3
6-1
6-2
13-1

A-2
A3
A4
A-5
A-6

B-1
B-2
B-3
B4
D-1

Status Indicator Definitions

Serial Port Pin Definitions

DIP Switch Configuration and Definition
BASIC Commands Supported in All Modes
GE Fanuc - NA Custom BASIC Commands
Examples of Systems Tested
Interactive/Edit Mode Control Functions

F1 - F10 Functdon Keys

PC Keyboard Conversion Chart

Default Settings for W-ED Editor

Block Operations

R/W Parameter Description

I/O Reference Ranges

TRANSFER Command Parameters
Commands

Statements

Dual Operand Operators

Single Operand Operators

Special Function Operators

Stored Constants

GE Fanuc - NA Custom BASIC Commands
Sample Floating Point Format -

Location and Definition of Pointers

Storage Allocation

Line Format

ASCI Code List

Tables

2-1
23

2-7
2-8
4-1
4-8
4-8

5-2
54
6-4
64
13-1

A-l
A-2

A-3
A-3

B-1
B-1

B-3
D-1

Chapter 1

1-1 Introduction

GFK-0249

The ASCI/BASIC Module (catalog number IC610ABM100) for the Series One™ family of Program-
mable Logic Controllers (PLC) is a compact module requiring only a single slot in a Series One or
Series One Plus PLC rack. The ASCI/BASIC Module can be used in either a Series One or Series One
Plus PLC control system. However, the expanded instruction set (data operations), which is a standard
feature of the Series One Plus PLC, allows more efficient use of all of the features of the module.

Function of the ASCII/BASIC Module

The ASCII/BASIC Module under control of the resident BASIC programming language, and with
appropriate ladder logic, can exchange information with the PLC. This information can be the status of
any Input or Output point or internal reference, which can be transferred to the ASCII/BASIC Module
from the Series One or Series One Plus PLC. Additionally, the contents of a register can be transferred
to the Series One Plus PLC from the ASCII/BASIC Module. With appropriate programming, the
ASCII/BASIC Module can instruct the Series One PLC to read or change the status of any output point
or any register.

i

ad2677
1

)

ASCIl BASIC

DG
BATT

USRt1
USR2

8

PROT

[] U

J

I

0
| N
“() ﬁﬁﬁﬁf C)I

4]

—_

Figure 1-1. Series One PLC ASCII/BASIC Module

1-2 Introduction

GFK-0249
General Specifications
General specifications for the Series One ASCII/BASIC Module are as follows:
Operating Temperature 0°C to 60°C (32°F to 140°F)
Storage Temperature -20°C 1o 70°C (-4°F 10 158°F)
Humidity 5% to 95% (non-condensing)
Power requirements 300 mA, maximum (supplied by the 9 V dc output of the
Series One power supply)
Environment No corrosive gases
Meets Agency Standards For:
Radio Frequency Interference FCC Class A, part 15, subpart J
Shock Mil-std 810C method 514.2, rank F
JIS.C091210G
Vibration Mil-std 810C method 516.2
JIS.C091210G
Noise Immunity NEMA 1CS3-304
RFI - 150, 450 Mhz
Impuise 1000 V, 1 ps pulses
Clock Rate 11.0592 Mhz
Memory 56K RAM, Batiery backed
Battery Lithium (catalog mumber IC610BAT100), replaceable
Battery Life One year, worst case. Three years, typical. Bartery should
be replaced within one week of the BATT indicator
tuming on. Once the battery has been removed from the
module, it must be replaced within thirty minutes to
ensure that RAM memory contents are maintained.
BASIC Language Intel® MCS® BASIC 52 with additional commands by GE
Fanuc - NA
Communications Through a built-in RS-232 Serial Port (RTS included).
Baud Rates 300 to 19,200 baud, selectable through programming
Diagnostic/Status LEDs controlled by CPU with additional LEDs controlled
by user’s BASIC program.

@®Registered Trademark of Intel corporation

ASCI/BASIC Module Communications

The ASCII/BASIC Module has a built-in serial RS-232 communications port, which gives it the ability
to interface to any ASCII device. These devices can be dumb CRT terminals, printers, modems, robots,
other ASCII/BASIC Modules (including the Series Five™ ASCII/BASIC Module) and numerous other
serial devices. With proper programming and ladder logic implementation, the ASCII/BASIC Module
can communicate with Series One Data Communications Units, Series Three™ Data Communications
modules, and Series Five and Series Six™ Communications Control Modules. Data sent to this port
must be in ASCII format, unless using the INPB instruction. A table of the standard ASCII codes can
be found in Appendix E in this manual.

Introduction 1-3

GFK-0249

ASCII/BASIC Module Configuration

An ASCII/BASIC Module can be configured, by setting DIP switches, to be addressed as an 8 Input/8
Output, 8 Input, or 8 Output, or 4 Input/4 Output module. If it is configured to be used with both Inputs
and Outputs, the module must be installed in a high-density slot in the PLC rack. Multiple modules may
be included in a system, as long as the load on the rack power supply is not exceeded, and sufficient 1/O
references are available.

BASIC Language

The BASIC language for the Series One ASCII/BASIC Module is a subset of the Inte]l MCS BASIC-52,
with additional commands provided by GE Fanuc - NA. These additional commands provide the ability
to perform string comparison, calculate string length, renumber BASIC program lines, change baud rate,
delete programs, turn LEDs on and off, and reliably transfer data between the CPU and the
ASCII/BASIC module. Data can be entered as decimal or hexadecimal numbers (Refer to Appendix D
under ‘‘Hexadecimal’’). Nore that if hexadecimal numbers are to be entered, and they start with A - F,
they must be preceded with a 0 (zero), e.g., 0AI13CH (H = Hexadecimal).

Modes of Operation for Memory Use

The ASCII/BASIC Module has two modes of operation for use of memory resources, expanded mode
and partitioned mode. Use of the expanded mode in conjunction with the ABMHelper program
(IC641PBES504) is strongly recommended. In the expanded memory mode, all 56K of RAM memory is
available for program development and execution. In the partitioned mode the lower 32K of memory is
used for program development and execution, and the upper 24K (8000-DFFFH) of memory (which is
the archival storage area, or ASA) is used for program storage, similar to using an internal floppy disk.
In addition, there is 6K of permanent storage area (PSA) from EOOOH to F7FFH which can be used as a
battery backed storage area for variables which will not be automatically reallocated by BASIC. This
means that these variables can be used by other BASIC programs which may be loaded at different
times. Normally, loading a new BASIC program will clear all previously declared variables.

The archival storage area is protected by a write protect/enable switch (labeled PROT) located on the
faceplate. This provides an option that allows you to protect BASIC programs that have been stored
from being overwritten. This switch must be left in the write enabled position for the expanded memory
mode. This area is cleared if DIP switch position 3 is in the Clear on Power Up position.

The permanent storage area is not write protected with the front panel switch. This area is cleared when
DIP switch position 3 is in the clear position on power-up, but is not cleared by a normal power-up
cycle. The PSA is used to chain program data or information from one program to the next. If a new
program is downloaded, all variable data is lost, except if it has been stored in this area.

On the first power-up, the ASCII/BASIC Module sets the mode to the expanded memory mode. To use
the expanded RAM for archival storage, the following command must be executed, either after each
clear sequence or in the first line of the program: MTOP = 32767.

NOTE

If the file transfer and storage commands are used without first setting MTOP=32767, unpredict-
able operation may occur.

To return the module to the expanded memory mode, execute the statement: MTOP=57343.

1-4 Introduction

GFK-0249

MCS BASIC-52 Reference Information

The following information will help you in understanding the MCS BASIC-52 programming instruc-
tions in this manual.

Argument Stack: The argument stack occupies locations 301 (12DH) through 510 (1FEH) in external
RAM memory. This stack stores all constants that MCS BASIC-52 is currently using.
Operations such as Add, Subtract, Multiply, and Divide always operate on the first two
numbers on the argument stack and return the result to the argument stack. The argument
stack is initialized to 510 (1IFEH) and ‘‘grows down’’ as more values are placed on the
argument stack. Each floating point number placed on the argument stack requires 6
bytes of storage.

Commands: MCS BASIC-52 operates in two modes: Command (or direct) mode and Run (or
interpreter) mode. MCS BASIC-52 commands can only be entered when the processor is
in the Command mode. This manual uses the terms ‘‘Run mode’’ and ‘‘Command
mode’’ to refer to the two different modes of operation.

Constants: A constant is a real number that ranges from £1E-127 to £99999999E+127. A constant
can also be an integer. In this manual, constants are referred to as: [const].

Control Stack: The control stack occupies locations 96 (60H) through 254 (OFEH) in extemnal RAM
memory. This memory is used to store all information associated with loop control (i.e.,
DO - WHILE, DO - UNTIL, and FOR - NEXT) and BASIC subroutines (GOSUB). The
stack is initialized to 254 (OFEH) and ‘‘grows down’’.

Data Format: The range of numbers that can be represented in MCS BASIC-52 is £1E-127 to
+99999999E+127.

There are eight digits of significance in MCS BASIC-52. Numbers are internally
rounded to fit this precision. Numbers may be entered and displayed in four formats:
integer, decimal, hexadecimal, and exponential. For example: 129, 34.98, OAG6EH,
1.23456E+3.

Expressions: An expression is a logical mathematical formula involving operators (both single and
dual operand), constants, and variables. Expressions can be simple or quite complex.
(For example, 12*EXP(A)/100, H(1)+55, or (SIN(A)*SIN(A)}+COS(A))/2.) A
‘‘stand-alone’’ variable ([var]) or constant ([const]) is also considered an expression. In
this manual, expressions are referred to as: [expr].

Format Statements: Format statements may only be used within the PRINT statement. The
FORMAT statement includes TAB([expr]), SPC([expr]), USING(special symbols), and
CR (carriage return with no line feed).

Integers: In MCS BASIC-52, integers are numbers that range from 0 to 65535 or OFFFFH. All
integers can be entered in either decimal or hexadecimal format, and all hexadecimal
numbers must begin with a valid digit. (For example, the number AOOOH must be
entered as 0ACOOH.) When an operator, such as .AND. requires an integer, MCS
BASIC-52 will truncate the fraction portion of the number so it will fit the integer format.
All line numbers used by MCS BASIC-52 are integers. In this manual, integers and line
numbers are referred to, respectively, as: [integer] - [In num].

NOTE

Throughout this document, the brackets [] are used only to indicate an imeger,' constant, etc.
They are not entered when typing the actual number or variable.

Introduction 1-5

GFK-0249

Internal Stack: The stack pointer on the 8052AH microcontroller (special function register, SP) is
initialized to 77 (4DH). The 8052AH’s stack pointer ‘‘grows up’’ as values are placed on
the stack. In MCS BASIC-52 you have the option of placing the 8052AH’s stack pointer
anywhere (above location 77) in internal memory.

Line Editor: MCS BASIC-52 contains a minimum-level line editor. Once a line is entered, you may
not change the line without retyping it. However, you may delete characters while
entering a line by using the RUBOUT or DELETE character (7FH). The RUBOUT
character will cause the last character entered to be erased from the text input buffer.

Additionally, the Curl D key combination will cause the entire line to be erased. Ctrl Q
(X-ON) and Cul S (X-OFF) recognition has been added to the serial port. However, you
must be careful not to accidently type a Ctrl S when entering information because the
MCS BASIC-52 will no longer respond to the console device. Cul Q is used to bring the
console device back to life after typing Cul S.

Operators: An operator performs a pre-defined operation on variables and/or constants. Operators
require either one or two operands. Single operand operators are SIN, COS, and ABS.
Dual operand operators include Add (+), Subtract (-), Multiply (*), and Divide (/).

Relational Expressions: Relational expressions involve the operators EQUAL (=), NOT EQUAL (<
>), GREATER THAN (>), LESS THAN (<), GREATER THAN OR EQUAL TO (>=)
and LESS THAN OR EQUAL TO (< =). They are used in control statements to ‘‘test’’ a
condition (i.e., IF A<100 THEN ...). Relational expressions always require two oper-
ands. In this manual, relational expressions are referred to as: [rel expr].

Special Function Operators: Virtually all of the special registers on the 8052AH microcontroller can
be accessed by using special function operators. The exceptions are PORTS 0, 2, and 3,
and non-I/O associated registers such as ACC, B, and PSW. Other special function
operators are XTAL and TIME.

Stack Structure: MCS BASIC-52 reserves the first 512 bytes of external data memory to implement
two ‘‘software’’ stacks. These are the control stack and the arithmetic/argument stack.
Understanding how the stacks work in MCS BASIC-52 is nor necessary if you wish to
program only in BASIC. However, understanding the stack structure is necessary if you
wish to link MCS BASIC-52 to assembly language routines.

Statements: A BASIC program is comprised of statements. Every statement begins with a line
number, is followed by the statement body, and then terminates with a carriage return
(ct), or a colon (:) in the case of multiple statements per line. Some statements can be
executed in the Command mode; others cannot. There are three general types of
statements in MCS BASIC-52: Assignments, Input/Output, and Control.

e Every line in a program must have a statement line number ranging between 0 and
65535, inclusive.

e Statement numbers are used by BASIC to order the program statements sequentially.

e In any program, a statement number can be used only once.

e Statements need not be entered in numerical order, becanse BASIC will automatically
order them in ascending order.

e A statement may contain no more than 79 characters.

e Blanks (spaces) are ignored by BASIC, and BASIC automatically inserts blanks during
LIST.

1-6 Introduction

GFK-0249

e More than one statement can be put on a line, if separated by a colon (:), but only one
statement number is allowed per line.

System Control Values: Systern control values include the following: LEN (which returns the length
of the program), FREE (which designates how many bytes of RAM are not used that are
allocated to BASIC), and MTOP (which is the last memory location that is assigned to
BASIC).

Variables: A variable can be defined as either:
o A letter (ie., A, X, I).
e A letter followed by a number (i.e., Q1, T7, L3).

e A letter followed by a one-dimensioned expression (i.e., J(4), G(A+6), or
I(10*SIN(X))). .

o A letter followed by a number followed by a one-dimensioned expression (i.e., A1(8),
P7(DBY(9)), or W8(A+B)).

Variables may also contain up to 8 letters or numbers, including the underline character.
This allows you to use a more descriptive name for a given variable. Examples of valid
variables in MCS BASIC-52 are: FRED VOLTAGEl 111 ARRAY(ELE_1).

It should be noted that only the first character, the last character, and the length of the
variable are significant. Therefore, the variables ‘‘John’’, “‘Jean’’, and ‘‘Joan’’ will be
assigned the same values.

When using the expanded variable names it is important to note that it takes longer for
MCS BASIC-52 to process these expanded variable names. Also, you may not use any
keyword as part of a variable name. (For example, the variables TABLE and DIET could
not be used because TAB and IE are reserved words.) BAD SYNTAX errors will be
generated if you attempt to define a variable with a reserved word.

Variables that include a one-dimensioned expression ([expr]) are often referred to as
‘‘dimensioned’’ or ‘‘arrayed’’ variables. Variables that only involve a letter or a letter
and a number are called ‘‘scalar’’ variables. (Refer to the description of the DIM
statement for more information.) In this manual, variables are referred to as: [var].

NOTE

It takes MCS BASIC-52 less time to find a scalar variable because there is no expression to
evaluate in a scalar variable. To make your program run as fast as possible, use dimensioned
variables only when you have to. Use scalars for intermediate variables, and then assign the final
result to a dimensioned variable.

MCS BASIC-52 allocates variables in a ‘‘static’’ manner. That means each time a
variable is used, BASIC allocates a portion of memory (8 bytes) specifically for that
variable. This memory cannot be deallocated on a variable-by-variable basis. If you
execute a statement like Q=3, you cannot later decide that the variable Q no longer exists.
The only way you can clear the memory that is allocated to variables is to execute a
CLEAR statement. This statement frees all memory allocated to variables.

Chapter 2

2-1 Installation and Configuration

GFK-0249

An ASCII/BASIC Module can be installed in any 1/O slot in a Series One or One Plus CPU rack or 1/O
expansion rack. If the module is to be configured for use with both inputs and outputs, it must be
installed in a high-density slot (addressable for 16 1/O references). Multiple modules can be installed in
a rack, as long as the power requirements do not exceed the current supplied by the power supply in the
rack. Current requirements, expressed as units of load, for all modules in a rack must be added to
calculate total current requirements. Refer to the Series One/One Plus User’s Manual, GEK-90842, for
further information on units of load for individual modules.

ASCII/BASIC Module Hardware Features

Hardware features of the ASCII/BASIC Module are described in this paragraph. A group of seven LED
status indicators, a memory protect switch, and a 9-pin D sub-minijature connector are mounted on the
faceplate. Two LEDs are user definable through BASIC programming. The S-pin connector provides
access to the RS-232 port for connection to a programming device, or to a user supplied serial device.
The memory protect switch provides write protection for the archival storage portion of RAM memory.
A 4-position DIP switch located on the lower back of the module is used to configure selectable
operating parameters. The lithium battery (catalog number IC610BAT100) for backing-up the volatile
RAM memory is mounted on the smaller of the two circuit boards in the module. The battery is
replaceable by the user, and is monitored by circuitry in the module to ensure that the voltage of the
battery is at the proper operating level to maintain the RAM memory during a no-power condition.

Status Display
Seven LEDs provide a visual indication of system operation and diagnostic information.

Table 2-1. Status Indicator Definitions

LED Color Definition

PWR Green ON = Power is being supplied at the proper level by the rack power supply.
OFF = Incorrect or no power being supplied to this module.
DIAG Red On = This module is not operating properly (internal module error).
OFF = Module is operating properly.
BATT Red ON = Voltage of battery is low, or no battery present.
OFF = Battery present and at the proper voltage level.
RXD Amber ON = Data is being received by this module.
OFF = No data is being received.
TXD Amber ON = Data is being transmitted by this module.
OFF = Data is not being transmitted by this module.
USR1 Amber Can be user defined in BASIC program.
LEDO 1 command turns USR1 off.
LEDI1 1 command turns USR] on. This LED also reflects the status of the RTS
output signal. '
USR2 Amber User defined in BASIC program.
LEDO 2 command turns USR2 off.
LED1 2 command turns USR2 on.

2-2 Installation and Configuration

GFK-0249

As part of the power-up diagnostic for the module, each time that a power cycle occurs, all of the LEDs
will turn on for approximately one second. After the one second duration all LEDs, except for the PWR
LED, will turn off. While the LEDs are on during this cycle, the ASCII/BASIC Module will not
respond to the space bar for autobaud operation on the programming device. Autobaud operation is
described below.

RS-232 Serial Communications Port

Access to the RS-232 serial port on the ASCII/BASIC Module is through the 9-pin D-subminiature
connector mounted on the lower part of the faceplate. This port is used for both programming and user
interface, and supports the XON, XOFF protocol. The port is not ground isolated from the rack
backplane.

The data format for communications with this module is: start, 1 bit /Data, 8 bits/Parity, none/Stop, 1 bit.
This port supports RTS/CTS. Baud rate is selectable from 300 to 19,200 baud, and is determined at
power-up by sending a 20H (space bar on programmer keyboard) character to the module, or previously
programming it in the resident BASIC program. Baud rate can also be set with the PORTSET baud
command in the BASIC program. This eliminates the need to press the space bar and use the autobaud
routine on the next power-up. For initial start-up after clearing the module, the space bar is pressed.

NOTE

RTS is not supported in version A (catalog number IC610ABM100A) of this module. Modem
applications requiring RTS/CTS can usually be handled with the converter/repeater unit (Adaptor
Unit, IC630CCM390) when using a version A ASCII/BASIC Module.

242678

— RESET ABM

m—-@@_m

Figure 2-1. RS-232 Communications Port Configuration

Installation and Configuration 2-3
GFK-0249

Table 2-2. Serial Port Pin Definitions

Pin Signal Name Description
2 XD Transmit Data
3 RXD Receive Data
4 RTS Control Output
6 RESET ABM Resets ABM
7 GND Signal ground (0V)
Frame DC COMM DC common,
Connector Shell

The RTS Signal

The ASCI/BASIC Module has an RS-232 compatible RTS output which can be used in conjunction
with modems and other devices which require a ‘‘handshake’’ signal. This feature allows the use of the
ASCI/BASIC Module in multidrop applications with modems, and with certain other devices. The A
revision of this module does not include the RTS feature.

The RTS output signal is available on pin 4 of the serial port connector. The RTS signal is controlled by
the LED1 statement in the BASIC program, and the USR] LED on the front panel shows the status of
the RTS signal. If the LED is on, the RTS signal is in its ‘‘true’’ state.

If it is not necessary to use the RTS capabilities, then the USR1 LED can be used as a general status
LED from BASIC program control.

Using the RTS Signal
The recommended procedure for using RTS is as follows:

1. Turn on RTS using the LED1 1 command.

2. Delay a period of time depending on your application. This time can usually be determined by
experimental means (e.g. start with a short delay time, and keep increasing it until it works OK, then
add 50% more). For most devices, this time would be less than 1 second.

Use the PRINT statement to send the data from the port.

Turn off RTS using the LED1 0 command.

Use the INPUT, GET, or INPB statements to receive data, if required.
Loop back and do it again.

oW kW

Installation and Configuration

GFK-0249

Example of an Application Using RTS

A typical application using RTS is as follows:
Port configuration using RTS.

ABM (Revision B) Modem or other device
Pin
2 mmmmr—rr e — e ———— > Received Data
3 <- —————————cc————— Transmitted Data
4 === —— > RTS or CTS Input
no connection X-<-=--- RTS or CTS Output
7 - - - Ground

BASIC Program Example:

1000
1010
1015
1020
1030
1040
1045
1047
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
2000
2010
2020
2020
2030
2040
2050
2060
2070

REM This program sends "Hello"™ to the remote device, then waits for

REM a 3 character response from the remote end, which is printed.

STRING 100,10 REM Save string space for the INPB below.

LET FLAG = 99 REM This variable must be declared before it is used.
LET DELAY = .5 REM .5 seconds seems to work OK in this application.
CLOCK 1 REM This starts up the clock in BASIC.

REM This is the end of the setup section.

REM The main loop follows.

LED1 1 : REM This turns on RTS, and the USRl LED.

GOSUB 2000 : REM This is a delay to wait for CTsS.

PRINT "Hello" REM This goes out the serial port to the remote.
LEDO 1 REM This turns off RTS, and the USR1l LED.

REM The statement below waits 3000 ms to receive 3 characters in $(1).
INPB $(1),3,3000,FLAG

ee o0 oo oo

ee oo o

PRINT $(1) : REM Printout the response from the other end.
GOTO 1050 : REM loop back to do it again.

REM This is the end of the main program.

REM

REM

REM This is a delay to wait for CTS. This value can be experimentally
REM determined in any application.

LET DBY(71) = 0 : REM Reset the fractional portion of TIME.
LET OLDT = TIME : REM Get the time the loop was entered.

LET NOWT = TIME : REM Store away the present time.

LET DELT = NOWT - OLDT : REM Calculate how long in the loop so far.

IF DELT >= DELAY THEN RETURN : REM If delay time is reached, exit.
GOTO 2030 : REM If not, then keep looping.
REM This is the end of the delay subroutine.

Installation and Configuration 2-5

GFK-0249

DIP Switch Configuration

The 4-position DIP switch on the lower back of the module must be configured at installation. This is
the only item requiring configuration by the user. Before installing an ASCII/BASIC module in the
selected I/O slot, configure the DIP switch to the required parameters as shown below.

Table 2-3. DIP Switch Configuration and Definition

Position , Definition
1and 2 Select 1/O Points used by Module
Switch 1 Switch 2 1/0 Points
ON ON 8 In/8 Out
OFF ON 81In
ON OFF 4 In/4 Out
OFF OFF 8 Out
3 ON = On power-up, the ASCII/BASIC module goes to RUN mode and executes the program in

development memory, or optionally executes a program from the Archival Storage Area. To make
program changes, abort the RUN mode using the Cul/C key sequence. ABMbelper automatically

aborts RUN mode on power-up. If the Run/Trap mode is enabled, program execution cannot be
aborted with Cul/C.

If you do not want to run the program immediately after power-up, the first statement in the program
should be a STOP command. This will not allow the program to execute automatically on power-up.
The STOP command can be removed after program development is completed.

OFF = On power-up, clears the entire BASIC program, variable memory, the Archival Storage Area,
and the Permanent Storage Area. This switch should be placed in the OFF position only for initial
start-up, or if it is desired to clear a program from memory when the Run/Trap mode is enabled and a
password has accidentally not been programmed. At the end of the clear sequence, the module goes
into the autobaud mode, waits for a space bar from the terminal device, then prints the message, ABM
HAS BEEN CLEARED, RETURN TO NORMAL MODE. This is a reminder to return DIP switch

position 3 to the ON position. You can leave the switch in the OFF position, however memory will be
cleared after each power-up.

4 ON = Nommal Operation

OFF = Diagnostics enabled. If the module is configured for the § Inputs mode, the self diagnostics
routine will be performed. These diagnostics consist of the following items:
e System ROM check

o Internal RAM check
e External RAM check

o Loop back check for communications port

This test requires that pins 2 and 3 of the RS-232 communications port be connected together.
Failures detected by the diagnostics are indicated as:

e All LEDs on = System ROM checksum error

e DIAG and POWER on = Internal system RAM error

e All LEDs blinking = External system RAM error

e USER1] and USER2 LEDs on = Serial port error

e No LEDs on = No errors

2-6 Installation and Configuration

GFK-0249

The factory defaults for the DIP switch settings are for all switches set to the ON position. If you should
encounter any start-up problems with the ASCII/BASIC Module, set DIP switch position 3 to the OFF
position. This will clear memory when power is next tumned on. Then, turn power off and reset the
switch to the ON position for nommal operation. When the module is powered-up, the PORTSET
statement should be used to set the working baud rate, then press the Enter (or Return) key.

Run/Trap Mode

A feature called the Run/Trap mode is available which provides a method for the user to protect
programs from unauthorized viewing, and/or modification by unauthorized personnel. For example, if
you have written a unique program intended for use in multiple systems and you do not want unautho-
rized access to the program. For those programs you wish to protect, program security can be assured
by use of the Run/Trap mode. This mode is initiated by writing ASH to FFFAH, and writing 5AH to
FFFBH with the commands, LET XBY(OFFFAH)=0ASH, and LET XBY(OFFFBH)=05AH. Be sure to
have an ‘‘escape password’’ programmed, and save your program before doing this step.

On the next power-up cycle, if DIP switch position 3 is in the ON position (normal operation), the
ASCI/BASIC Module will go into the Run/Trap mode. It is then not possible to exit the program by
using the Cul/C key sequence as you can during normal operation with the program unprotected. You
also cannot list or upload the program. The program stays in the Run mode. A custom password must
be built into the program which writes 0 to FFFABH. Then Cul/C will be re-enabled after the next
power cycle. If the password is forgotten, you must totally clear the program by initiating a power-up

cycle with DIP switch 3 in the OFF (clear) position. Use of the Run/Trap feature is not recommended
unless it is absolutely required.

Memory Usage For Program Development

In the previous chapter, the two methods of operation using available memory, which are expanded
mode and partitioned mode, were discussed. Before developing your programs, you must decide which
method to use. Use the criteria described below as a guide for choosing which method to use.

Expanded Mode of Operation

This method uses all of the ASCII/BASIC Module’s memory for development of a single program. The
program is developed using the full 56K of available memory. If it is desired to save revisions to the
program during development, it is necessary to use a computer with the ABMHelper program installed
to retrieve and save the revisions. This method allows the development of programs which require the
full S6K of memory. If this method is used, there is no Archival Storage Area (ASA), and the BURN,
RAM, ROM, RROM, XFER commands are not used. This is the simplest and most straightforward
method to use.

Partitioned Mode of Operation

This method splits the available memory into a 32K RAM development area, and a 24K Archival
Storage Area (ASA). Multiple programs can be stored in the ASA, then retrieved to the 32K RAM area,
and executed. With this method, the total program size for all the archived programs is 24K, and the
total size available to the executing program and variables is 32K. The programs to be archived are
developed in RAM, then saved to the ASA with the BURN command.

Programs in the Archival Storage Area are deleted by the DELPRM command. The DELPRM command
deletes a specific program, then compresses the remaining programs to allow for more program storage.

Installation and Configuration 2.7

GFK-0249%

This mode of operation is valuable if you are using a dumb terminal for programming. Partitioned mode
is enabled by sending the command MTOP=32767 to the ASCI/BASIC Module. If you are using a
dumb terminal as your programming device, this mode should be considered.

Use of Keywords

When writing your BASIC program, none of the following keywords may be used as part of a variable
name, even though the keyword is listed as ‘‘nor supported’’ or ‘‘do not use’’. The BASIC commands
which are supported by the Series One ASCII/BASIC Module are listed below. Refer to the applicable
chapter in this manual for detailed information on using each of the keywords.

Table 2-4. BASIC Commands Supported in All Modes

Commands Statements Operators
RUN CLEAR | ADD (+)
CONT CLEARS DIVIDE (/)
LIST CLEARI EXPONENTIATION (**)
NEW CLOCK1 MULTIPLY (*)
NULL CLOCKO SUBTRACT (-)
DATA LOGICAL AND (.AND.)
READ LOGICAL OR (.OR.)
RESTORE LOGICAL X-OR (XOR.)
DIM LOGICAL NOT
DO-WHILE ABS O
DO-UNTIL INT O
END SGN O
FOR-TO-STEP SQR O
NEXT RND
GOSUB LOG ()
RETURN EXP ()
GOTO SIN O
ON-GOTO COS O
ON-GOSUB TAN ()
IF-THEN-ELSE ATN O
INPUT =, >, 3=, <, <=, O
LET ASC ()
ONERR CHR ()
ONTIME CBY (
PRINT DBY ()
PHO. XBY ()
PHI1. GET
PUSH TIME
POP XTAL
REM MTOP
RETI1 LEN
STOP FREE
STRING Pl
LDb@
ST@
IDLE

2-8 Installation and Configuration

GFK-0249

Commands Used Only in Partitioned Mode
The following commands should only be used when operating in the partitioned mode.

XFER
RROM
ROM
RAM
DELPRM
BURN

GE Fanuc - NA Custom BASIC Commands

In addidon to the BASIC commands provided by Intel BASIC-52, GE Fanuc - NA has developed
several other useful ones. A brief description of these commands is provided below. For a detailed
description of these commands, see Chapter 6 in this manual.

Table 2-5. GE Fanuc - NA Custom BASIC Commands

Command Function of Command

TRANSFER Exchanges data with the Series One CPU.

LSTR Calculates the length of a string.

SPLIT Reads a single bit or field of bits.

MOVE Sets a single bit or field of bits.

SWITCH Read the DIP switch settings on the ASCII/BASIC Module. This allows the program
to monitor the board settings.

MATCH Does a String comparison.

INPB Fetches specified number of characters from the serial port and stores them in the
specified string.

RENUM@ Renumber the BASIC line numbers.

DELPRM Deletes a program stored in the Archival Storage Area.

PORTSET Selects the baud rate for data transfer between the module and the PLC. Selections
are 300, 600, 1200, 2400, 4800, 9600, or 19200 baud.

ILEDOlor2* Turns the specified LED off.

LEDl lor2* Turns the specified LED on. Also used for RTS control (see page 2-3)

* These 2 commands enable the two USER LEDs on the front panel to be turned on and off under
program control.

Sign On Message

On power-up, after the internal diagnostics are complete and if no program is in memory, the first
display you will see on the screen is the sign-on message:

Welcome to GE Fanuc BASIC Vx.x

Vx.x is the applicable version number of BASIC that is resident in your ASCII/BASIC Module.

Installation and Configuration 2-9
GFK-0249

Commands, Statements, and Operators Not Supported

The following BASIC commands, statements, and operators should not be used, since they are not
supported by the Series One ASCI/BASIC Module.

LIST#, PRINT#, PHO.#, PH1.#
PGM

PROG

PROG1 to PROG6

FPROG1 to FPROG6

BAUD

ONEX1

The following statements, commands, and operators are for use only when writing custom assembly
language routines, and are not normally used. If you wish to use these functions, it is recommended that

you obtain a copy of the Intel manual, catalog number 270010-002 or later. This manual contains
detailed information on these items.

Command Function of Command

CALL Used to call an assembly language routine.

LIST@ Requires a custom driver to be written in assembly language.
PRINT@ Requires a custom driver to be written in assembly language.
PHO.@ Requires a custom driver to be written in assembly language.
PH1.@ Requires a custom driver to be written in assembly language.
Ul Requires a custom driver 1o be written in assembly language.
vUo Requires a custom driver to be written in assembly language.

IE, IP, PCON, T2CON, TCON, TMOD, TIMERO, TIMER1, TIMER2: These require a detailed
technical knowledge of the 8052 chip, and should not be used.

Troubleshooting the ASCII/BASIC Module

The ASCI/BASIC Module is designed to provide trouble free operation for many years. If any
problems should occur during operation of the module, you can easily troubleshoot it by observing the
status display, which is the main troubleshooting tool. The status display consists of seven LEDs on the
front of the module. Definitions for the ON and OFF condition for each LED can be found in table 2-1.

Note that all of the status indicators are relatively self-explanatory. A basic troubleshooting guide is
provided for you in the following paragraphs.

Troubleshooting Guide

Each of the status indicators is listed below. The normal status of each LED is noted along with some
possible cures for the problem causing an abnormal indication.

e PWR: Nommal condition - ON. If this LED is OFF, check the voltage source to the rack. If it is
correct, the problem is either a faulty power supply, or the ASCI/BASIC Module.

e DIAG: Normal condition - OFF. If this LED is ON, it indicates that an internal diagnostic has failed.
The ASCII/BASIC Module should be replaced.

e BATT: Normal condition - OFF. When this LED turns ON, the lithium back-up bartery for RAM
memory is either dead, or its operating voltage is too low to maintain the contents of RAM memory in

2-10 Installation and Configuration

GFK-0249

the event of a power loss. When this condition occurs, the battery should be replaced within one
week.

e RXD and TXD: These LEDs reflect the communication status between the ASCII/BASIC Module
and the Series One PLC. When ON, data is being received by (RXD) or transmitted from (TXD) the
module. If communication is attempted and the LEDs do not turn on, or if the LEDs stay on
continuously even though the ASCII/BASIC Module is not communicating, check for proper connec-
tion of the cable to the module, or a damaged cable. If the cable and its connections are good, replace
the module.

e USRI and USR2: The condidon or status of these LEDs is defined by the user’s program. If they
are not providing a status as expected, check your program, or if a physical device is being monitored,
check that device.

Replacing the Lithium Battery

e Before you proceed with the following steps, have a new lithium battery IC610BAT100) available
for immediate replacement.

e Save a copy of the program to diskette using ABMHelper, if possible.

e Tum off power to the rack in which the module is installed.

e Remove the module from its slot.

e Refer 1o the following figure for location of the battery on the ASCII/BASIC module.

2 ——\ 242679

| —

]
1 j
—5 =

L/

Figure 2-2. Location and Replacement of Lithium Battery

4]

Installation and Configuration 2-11

GFK-0249

e To remove the battery, pull up on the part of the battery not covered by the battery holder.

e Once the battery has been removed from the module, it must be replaced within thirty minutes to
ensure that the contents of RAM memory will not be lost.

e Insert the new battery by placing it in the holder and pushing down until it is seated in place.
e Reinstall the ASCII/BASIC Module into its slot in the rack.

e Apply power to the rack and observe the LEDs for proper operation.

e Reload the program previously saved on diskette (if required).

Chapter 3

3-1 Creating and Storing BASIC Programs

GFK-0249

When using the Series One ASCI/BASIC Module, the following functions typically need to be
performed:

e Creation of the user’s BASIC program

e Storage of the user’s BASIC programs from the ASCI/BASIC Module memory to disk

e Retrieval of the user’s BASIC programs from disk to the ASCI/BASIC Module’s memory

A program called ABMHelper has been developed to assist in implementing the functions listed above.

In addition, many commercially available packages (such as VITERM) are available which will also
perform these functions.

Advantages of Using ABMHelper

Using the ABMHelper program to assist in implementing the ASCII/BASIC Module’s features provides
the following advantages:

e Provides terminal emulation capability for direct connection to the ASCII/BASIC Module.

¢ Provides program storage and retrieval functions using the computer’s diskette functions.

e Provides a full screen editor. This is also useful for non-ASCII/BASIC Module editing tasks.

The following procedures are recommended for use with the Series One ASCII/BASIC Module if you
will be using an IBM-PC, or compatible computer

e Use ABMHelper running on a Workmaster computer, or other IBM-PC compatible computer.

e Use the ASCII/BASIC Module in Expanded Memory Mode. This will allow all 56K of RAM to be
used for program development and execution. Preliminary versions of the developing program can be
saved to disk as you proceed.

e Edit your program with the W-ED full screen editor, using either the ‘‘Source” or ‘‘No Source”
operation described below.

If you will be using a dumb terminal with the ASCII/BASIC Module, the following procedures are
recommended:

e Use the dumb terminal as the interface device.

e Use the ASCI/BASIC Module in Partitioned Memory Mode. By using this mode, preliminary
versions of the program can be saved in the ASCII/BASIC Module’s Archival Storage Area.

e Edit the program using the built-in line editor.

e Add remarks to the code in the form of numbered lines, e.g., ‘7000 REM This is the start of the PID
algorithm’’.

SOURCE/NOSOURCE Configuration

ABMHelper has several different edit modes. Depending on your own circumstances, you may have a
strong preference for one mode or another. You must select either the SOURCE or NOSOURCE edit
mode. The operation of ABMHelper is different depending on which mode you have selected.
Normally, once you have chosen this mode, it will not be changed again. Within both SOURCE and
NOSOURCE modes, there are two edit sub-modes which may be used under different circumstances.

32 Creating and Storing BASIC Programs

GFK-0249

These modes are also described below. The default setting is NOSOURCE (Cul/E and Cul/F are active -
refer to Chapter 4, ABMHelper for detailed information).

NOSOURCE Mode of Operation

The NOSOURCE mode of operation assumes that the user wishes to develop programs in the following
manner:

1. Enter and edit programs using ALL of the following:

A. The built in ASCII/BASIC Module hardware line editor. To change the program, type in a new
line which replaces the old line.

B. The Cul/E edit function, which loads the edit buffer with a small portion of the program, then
merges the edited file back into the ASCII/BASIC Module hardware. The W-ED full screen
editor is used. The reloading process can be very fast since only a small portion of the program
is edited and reloaded. To delete a line from the editor it is necessary to have the line number
followed by a blank line.

C. The Cul/F edit function, which loads the edit buffer with the entire program, then clears the
ASCI/BASIC Module hardware before reloading the edited file. The W-ED full screen editor
is used.

2. Save program revisions to diskette using the *‘Save program to disk’’ function selected as an option
from the ABMHelper main menu.

3. Program commentary is an actual part of the program using numbered program lines which contain
REM statements.

4. Program documentation aids such as indentation of FOR-NEXT loops, and addition of spaces
between words is lost every time the program is downloaded to the ASCII/BASIC Module.

SOURCE Mode of Operation
The SOURCE mode of operation assumes that the following development methodology is used:

1. Programs are edited using the W-ED editor supplied with ABMHelper.

2. Program revisions are saved to diskette automatically as part of the edit process.

3. After each program edit, the entire program is downloaded to the ASCII/BASIC Module. This
could take several minutes, even though the changes to the program were minor. There is 2 way to
download only a portion of the program to save time (see ‘‘Quick’” SOURCE Mode Editing).

4. If the ASCI/BASIC Module program is changed using the built-in line editor (which is convenient
for testing), these changes cannot be uploaded to the source file. It is necessary to re-enter the
changed lines in the source file, and download the entire program again.

5. Program documentation can include remarks without line numbers. These comments are not loaded
with the program, and do not take up space in the ASCII/BASIC Module (they are ignored by the
module when the program is downloaded).

6. Program documentation aids such as indentation of FOR-NEXT loops are retained.

The main advantage of the NOSOURCE mode is that changes can be made quickly and tested quickly.
The *‘master”’ program is actually in the ASCII/BASIC Module hardware. The main advantage of the

SOURCE mode is that programs can be clearly documented with no penalties. The ‘‘master’’ program
is on the disk.

Since some ASCII/BASIC Module programmers may be familiar with one particular style and have a
strong preference for that style, both mechanisms have been provided.

Creating and Storing BASIC Programs 33

GFK-0249

SOURCE/NOSOURCE Sub Modes
As previously described, there are four different ways to edit.

1. NOSOURCE mode with Ctrl/E (recommended for long programs, experienced programmers)
2. NOSOURCE mode with Cul/F (recommended for short programs, novice programmers)

3. SOURCE mode with quick edit (recommended for long programs, experienced programmers)
4. SOURCE mode with no quick edit (recommended for short programs, novice programmers)

The SOURCE/NOSOURCE mode decision should be made first, then the sub-mode chosen based on
program length and familiarity with the ‘‘merge’’ concept described below.

For novice users, and when working with short programs, it is recommended that either method 2 or 4
be used. In both cases, the entire program is loaded into the editor, and the whole edited program is
downloaded back into the ASCII/BASIC Module after the ASCI/BASIC Module’s memory is cleared.
This is the safest method to use, although it takes considerable time to download a long program (several
minutes). Basically, what you see on the editor screen is what you get in the ASCII/BASIC Module
after downloading. Conceptually, these are the easiest methods to understand. These methods are also
preferable when working with short programs, since the download time is not significant.

Both methods 1 and 3 ‘‘merge’’ only a part of the program back into the ASCII/BASIC Module. The
previous program is not cleared. This saves considerable download time, but the user must understand
the concept of merging. For example, it is not possible to delete a line in the editor, download the now
non-existent line, and have the line disappear in the ASCII/BASIC Module. The merge operation
basically overwrites the present program, and leaves untouched any lines which are not replaced by the
new edited file. If you are familiar with the GW-BASIC or BASICA editors, then you would probably
also be comfortable with these methods. These methods become valuable when long programs are
being edited, and only small changes are being made.

NOTE

If you still are unsure of which mode to use, then the default setting of NOSOURCE, used in
conjunction with the Ctrl/F function is recommended. Refer to Chapters 4 and 5, in this manual,
for more information about editing your ASCII/BASIC Module programs.

“Quick”” SOURCE Mode Editing

After editing of the source file has been completed, you have two options regarding reloading the
ASCI/BASIC Module.

1. By exiting the edit mode with the F1 key (to save the changes), then pressing any key except Esc at
the prompt, the entire source file will be transmitted to the ASCII/BASIC Module. This can take
considerable time if the file is long (even if only minor changes were made), but this method is
easier to understand.

2. An alternative method exists, but is more complicated. If only a few lines are changed in the source
file, and these lines are relatively close together, the following procedure can be used to minimize
the download time to the ASCII/BASIC Module.

A. Finish the editing to be done to the source file.
B. Using the Alt L key sequence, mark the beginning and end of the lines that you changed.

C. Press the Esc key to place the cursor on the command line. Then, type WED Z and press the
Enter key. A blank screen will be displayed.

D. Press the Crl/B keys. This will import the marked lines from the main source file.

3-4 Creating and Storing BASIC Programs

GFK-0249

E. Press the F1 key, then the Enter key. This will return you to the main source file after creating a
file named Z which includes the changes you made.

F. Press the F1 key, then the Enter key to save the new source file to disk. Press the Enter key at
the prompt to merge the Z file into the ASCII/BASIC Module.

This method can save considerable time if you are working with a large source file. It should be noted,
however, that you cannot delete a line in the ASCII/BASIC Module by eliminating it in the source file,

then merging the result as described above. The line number must be retained with a blank line
following it.

NOTE

*‘Quick’’ SOURCE mode editing is recommended only for those who are familiar with merging
of programs. Refer to the previous discussion of SOURCE/NOSOURCE sub-modes.

Configuring ABMHelper (Revision 1.02 and later)

Version 1.02 (and later versions) of ABMHelper provides a mechanism to change the operating
parameters of ABMHelper. The setup parameters are contained in the ABM.PSU file on the distribution
diskette. The parameters which can be changed are :

1. Default baud rate

2. Default communications port

3. Default time/date query on entry to ABMHelper
4. Edit mode

The default settings for these parameters are:

89600 baud

Communications port = COM1l

Time and date query = ON

Edit mode is NOSOURCE (Ctrl/E and Ctrl/F activated)

The edit mode selection was previously discussed.

The ABM.PSU file also contains some additional elements which are not changed by the user. The user
can change the ABM.PSU default settings by pressing the B key while in the main ABMHelper menu.
This activates the interactive setup function. After questions are answered regarding the above items, a
new ABM.PSU file is automatically created on disk, and read back into ABMHelper.

Baud Rate Setup

The default baud rate setting can be 1200, 2400, 4800, or 9600 baud. 9600 baud is preferred for all
ABMHelper operations since all serial transfers will occur more quickly at this baud rate. ABMHelper
cannot operate at 19200 baud although the ASCII/BASIC module can. If the Series One ASCII/BASIC
Module is put into the 19200 baud mode with the PORTSET 19200 command (to interface with a
different device), the only way to re-establish communications with ABMHelper is to clear the module
using DIP switch 3, re-establish communications at a lower baud rate, then reload the program.

Creating and Storing BASIC Programs 3.5

GFK-0249

Communications Port Setup

The default communications port is set to COM1. It is necessary that the computer running ABMHelper
has its ports set to work properly. If COM1 is not available on your computer, COM2 is the alternate
setting.

Time and Date Setup

The Time and date query on entry to ABMHelper is defaulted to ON. If you have an on-board real-time
clock in your computer, and your AUTOEXEC.BAT file has been modified to read this clock on
computer power-up, you may want to disable this automatic query. If your initial power-up date setting
keeps coming up 1980, you may want to be reminded to set the correct date on entry to ABMHelper.
This date is used to time stamp all files saved to disk from ABMHelper, or any other program. Even if
the automatic query is disabled, it is still possible to set the time and date from ABMHelper by selecting
option 8, Set/view time and date, from the Main Menu.

Hints for Documenting BASIC Programs

When writing programs in BASIC, there are some rules that should be followed for efficient use of
memory and program structure. An excellent source of information, including many examples, on

programming in BASIC is ‘‘The Lirtle Book of BASIC Sryle’’ by John Nevinson, available from
Addison-Wesley.

During the early years of Personal Computers many *‘tricks’’ were required to conserve memory space.
Memories of 2K or 4K bytes were standard, and long programs could not be contained in these
memories. These tricks mainly consisted of removing spaces from between words, no comments for the
code, and leaving no white space between lines of executing code.

Although these techniques had the desired effect of minimizing code space, they also had the undesir-
able effects of making the code hard to develop and even more difficult to maintain.

With the new developments in memory products, it is generally no longer necessary to use these tricks,
since memory capacities are large enough to handle the code, even when extensively documented.

We strongly recommended that your BASIC programs use the following guidelines. It will save you
time and money in the long run, and avoid the frustration of finding your way through your programs,
especially the long ones.

o Use only one basic statement per line of code. This is the most critical item in this list.

e Use remarks liberally, especially if you are using the SOURCE editing mode. The use of remarks for
good program documentation cannot be over emphasized. For example, you know exactly what this
code does now, but return to it after a two week vacation (or worse, after 2 years) and see how much
detail of the program you remember!! Also, if you are creating and editing your program exclusively
in SOURCE mode you should be aware that remarks (REM) without line numbers are ignored by the

ASCI/BASIC Module when the program is loaded. They do not use any memory space in the
ASCII/BASIC Module.

e When using the SOURCE editing mode, use spaces in lines to make the lines more readable. Don’t
squeeze words together. Make your program readable, so that you or others can understand it.

e Separate sections of code which have a common purpose with white space. It makes it easier to spot
when you need to revise that section.

e If you are are using the SOURCE editing mode, it is recommended that you use indentation when
programming IF-THEN-ELSE, DO-WHILE loops, and similar instructions. When you are debugging

Creating and Storing BASIC Programs

GFK-0249

your program and trying to figure out why it doesn’t work, it’s nice to be able to quickly find where

the end of the loop is located.
e Separate remarks that you enter from code with white space, and put remarks on separate lines.
e Use line number values of equal length. For example, use 1000 through 9999, not 1, 10, 100, 1000.

General Programming/Debug Hints

The following information is provided to aid you in programming and debugging your BASIC
programs.

1.
2.

Document the program liberally as previously described.

If you are developing a menu driven program (similar to ABMHelper), you may want to write the
menu handler portion of the program first, with the menu selections branching off to routines which
have not yet been written. This demonstrates the overall ‘‘user interface’’ of the program, and
provides a framework to build on.

Code and test small portions of the program before they are added to larger parts of the program.
¢ Code the new routine using the ABMHelper editor.

e Insert a2 temporary STOP instruction at the end of the new routine. This is later removed when
the program segment has been tested.

e Set variables, etc. to the correct state in ‘‘direct mode’’ (for example, LET X = 27), then execute
the new routine with a GOTO XXXX instruction, where XXXX is the start of the new routine.

e After the program portion has executed, check the status of variables, strings, etc. that were to be
changed in the program. For example, one way to do this is to type PRINT X at the command
prompt.

e Make changes using the editor, save the changes to disk, then go back two steps to ‘‘Set

variables, etc.”". Or, proceed to the following step.

® Remove the STOP instruction, and test the program segment as part of the overall program.

. Test your program with all possible values. For example, if your program prints a menu that

prompts ‘‘Select 1, 2, 3, 4’’, what happens if the response is 5 or Cal/N, or ABCD?

. If you are developing a program in a system that experiences frequent power cycles, you may want

to add a STOP statement in the first line of the program. This STOP statement can be retained
permanently if desired, or removed after the program has been debugged and is operating satisfacto-
rily. Normal operation of the ASCII/BASIC Module is to run the program in memory immediately
after power-up. The run process is normally aborted with a Cul/C key sequence, the programmed
STOP, or the start-up of ABMHelper.

. When debugging the overall program, use temporary STOP instructions at key points, the LET

instruction to set variables, and the PRINT instruction to view results. Ctrl/C can also be used to

halt execution of the program, however it is more difficult to know exactly where the program will
be halted.

. To see the last filenames used during program store and load operations, press the Cul/N key

sequence while in the terminal emulation mode.

. If using strings, be sure that the STRING statement is at the very beginning of the program.

Chapter 4

4-1 ABMHelper

GFK-0249

Features of ABMHelper

The GE Fanuc - NA developed program, ABMHelper is designed to operate with the Series One and
Series Five ASCII/BASIC modules. It operates on the same IBM-PC or compatible computer that is
normally used for programming the Series One and Series Five PLCs. A summary of features of the
ABMHelper program is as follows:

e Provides terminal emulation capability. This provides for basic communication with the
ASCII/BASIC Module, and for use of the internal BASIC line editor.

e Provides for archival storage of BASIC programs using the computer’s disk storage facilities.
Without this capability, your program would only be stored in the ASCII/BASIC Module. This could
be a problem, for example, if your ASCII/BASIC Module was somehow damaged, your program
would be lost if it were stored only in the ASCII/BASIC Module’s memory. With this capability,
your program is stored on floppy diskettes which can easily be stored in a safe place.

e Provides a full screen editor useful for creating and editing BASIC programs.

If you have not already read the ABMHelper configuration portion of Chapter 3, it is recommended that
you do so now.

System Requirements

The ABMHelper program is designed to run under MS-DOS and a BASIC interpreter, which can be
either BASICA or GWBASIC. It has been tested on the following Personal Computer systems, however
other IBM-PC compatible systems should work satisfactorily.

Table 4-1. Examples of Systems Tested

Computer DOS Version Main Memory BASIC
IBM-AT DOS 3.1 640K BASICA, GWBASIC
EPSON APEX DOS 32 512K GWBASIC
‘Workmaster DOS 3.0 640K BASICA, GWBASIC
Cimstar I DOS 32 640K GWBASIC

When running from a floppy disk system, ABMHelper uses a RAM Disk configuration. No additional
hardware is required, however, your computer must have at least 384K of main memory.

ABMHelper has been written to use Communications port 1 (COM1). This is the port that normally
connects to your ASCII/BASIC Module. Refer to Chapter 3, Installation and Configuration, in this
manual for more information on cable connections, or if you want to use a different COM port.

4-2 ABMHelper

GFK-0249

Contents of the ABMHelper Distribution Diskette

The ABMHelper distribution diskette that you received with your system contains the items listed

below. These files are found in the main directory of the diskette.

e The ABMHelper program, batch files, and utilities

e The W-ED full screen text editor

e A Demo/Help utility for the W-ED editor

e Text files used by the Demo utility. These files are found in the \TUTORIAL subdirectory on the
diskette.

The W-ED editor is useful for many other tasks in addition to being a BASIC editor. You will want to
make two copies of the W-ED files, one for use with ABMHelper, and one for use as a general purpose
text editor. The procedures for making these diskettes are described in the following paragraphs.

Creating a Backup Distribution Diskette
These steps should always be done.
To make a backup copy of your distribution diskette:

e Put your original diskette in drive A, and the backup diskette in drive B. Do not remove the write
protect tab from the distribution diskette. If there is not a write protect tab on the distribution diskette,
put one on.

e Use the DISKCOPY A: B: command to copy all files on the distribution diskette to the backup
diskette. Put the backup diskette away for safekeeping.

Creating a Separate W-ED Editor Diskette

If you want to have a separate Editor diskette for non-ASCII/BASIC Module use, perform the following
steps.

e Format another blank diskette. Label this diskette ‘“W-ED Editor’’.

e Put the original distribution diskette in drive A:, and the new W-ED editor diskette in drive B:.

* Type:

A: (press the Enter or Return key)
WEDCOPY A: B: (press the Enter or Return key)

This will copy all files associated with the W-ED editor to the W-ED diskette. This diskette can be
used for text editing unrelated to the ASCII/BASIC Module or ABMHelper. Also, the operating
parameters of the W-ED editor can be changed on this diskette to suit the user’s specifications using
the INSTALL program, which is discussed later.

NOTE

To use all W-ED features, it is necessary that the W-ED diskette be in the drive that was used to
boot up your computer (this also applies to hard disk systems).

ABMHelper 4-3
GFK-0249
Creating a Workable ABMHelper Diskette (Floppy Disk Based System)

These steps are necessary only if you use ABMHelper on a floppy only (no hard disk) system.

This section describes how to create your ABMHelper working diskette. Instructions for copying
ABMHelper to a hard disk can be found later in this chapter.

e Format a blank diskette using the FORMAT/S parameter. Label this diskette ‘“ ABMHelper Working
Diskette”’.

e Remove the write protect tab from the original distribution diskette.

e Using the DOS COPY command, copy the following files from your own computer’s DOS diskerte to
the original ABMHelper distribution diskette:

ASSIGN.COM
VDISK.SYS or other RAM Disk Driver
GWBASIC.EXE or BASICA.COM

If your RAM Disk Driver is not named VDISK.SYS, it should be renamed to VDISK.SYS, or the
config.sys file must be changed to use the file name of your driver.

e Put the write protect tab back on the distribution diskette.

e Put the original distribution diskette in drive A, and the new ABMHelper working diskette in
drive B.

* Type:

ABMTOFLP A: B: (press the Enter or Return key)

\

e This will copy the files needed for ABMHelper to the working diskette. The ABMHelper
working diskette must be a bootable diskette created with the FORMAT/S parameter.

e After completing this procedure, you should put your original distribution diskette away for
safekeeping.

You now have a working ABMHelper diskette for your computer system. Remember, if is necessary to
reboot your computer using this diskette (in Drive A) when you want to use ABMHelper from a floppy
disk.

Installing W-ED and ABMHelper on a Hard Disk System

To obtain the full features of the W-ED editor with a hard disk, the W-ED executable files must be
located in the root directory of the hard disk. Most features will work properly if the W-ED files are
located in a subdirectory. To copy W-ED to the root directory, insert the original distribution diskette in
drive A, then type: '

Al (press the Enter or Return key)
WEDCOPY A: C: (press the Enter or Return key)

The above is correct if C is the letter for your hard disk; If not, use the correct letter. This copies all
W-ED related files to the root directory of the hard disk. A subdirectory named \TUTORIAL is also
created that contains the files necessary to run the W-ED demonstration program.

4-4 ABMHelper

GFK-0249

The following steps are required only if ABMHelper will be used from a hard disk.

e If you will be using ABMHelper on a hard disk system, and the hard disk is drive C, put the
ABMHelper diskette in drive A and type:

A: (press the Enter or Return key)
ABMTOHD A: C: (press the Enter or Return key)

e This procedure creates a subdirectory named \ABM on your hard disk and copy the necessary files
to it. The file FDMARK.DAT i1s not copied to the hard disk since this file is used by the
ABMHelper program to determine that it is running in a floppy disk environment rather than a
hard disk environment.

e To use ABMHelper, type CD\ABM, then type ABMHD.

If for some reason the file FDMARK.DAT is copied to hard disk, you will notice erratic operation of the
program. If this is the case it should be deleted from the hard disk. Also, if you are using the program
in a floppy based environment, and if FDMARK.DAT is not on the disk as it should be, you will get a
message on entry to the program which says that you are using a hard disk. If this does happen, be sure
that FDMARK.DAT is on the boot up floppy. If you use the ABMTOHD batch file as described above,
and not a DISKCOPY or COPY command, these problems should not occur.

Using ABMHelper

Invoking the ABMHelper program requires different procedures determined by whether your system has
a hard disk or has only floppy disks. To invoke ABMHelper from a hard disk system, the following
sequence should be followed:

At the C> prompt, type in the following:

CD\ABM (press the Enter or Return key)
ABMHD (press the Enter or Return key)

To use ABMHelper from a floppy disk only system is a little more complicated. In order to improve
performance, a RAM Disk is created in computer memory, and the temporary files used during BASIC
program editing use this RAM Disk instead of a physical drive. It is ABSOLUTELY necessary to
reboot your computer with the ABMHelper diskette. By doing this, a special CONFIG.SYS file is read
in, and the RAM Disk is created.

Running From Floppy Disk

When properly installed, operation from floppy disk (and RAM Disk) is faster than operation from hard
disk. To run the ABMHelper from a floppy disk system, use the following procedure.

e Put the ABMHelper diskette that you created in drive A.

e Press the Ctrl/Alt/Del keys simultaneously, or push the RESET button on your computer.

e After a short period of time you should get a message regarding RAM Disk size and parameters. Note
the designation for the drive ID associated with the RAM Disk. Normally, this will be one letter
beyond the actual physical drives installed in the system. For example if you have two floppy disks,
labeled A and B, your RAM Disk designation will be C.

e Then, type ABM. All applicable files will be copied to the RAM Disk. Allowable designations for
the RAM Disk drive are B, C, D, E, and F.

e While using ABMHelper, be sure to designate the drive ID when saving or loading files. If you fail to
give the drive designator, the file will only be stored in RAM Disk, and may disappear when you exit

ABMHelper 4-5

GFK-0249

ABMHelper. If you accidentally save a program to RAM Disk, and exit ABMHelper, it is still
possible to copy the file from the RAM Disk to a real disk using the COPY command, however this
must be done before you reboot your computer again, or run other programs.

® Your floppy disks should be in operation only when saving or loading a program. If your floppy
disks operate when using the editor, you have not correctly installed ABMHelper.

e After exiting, if you want to run a different application, it would be best to reboot your computer
using your normal boot-up diskette.

ABMHelper Start-Up
The first thing you will see on the screen when you start-up ABMHelper is the following line:

l=5S1aBM, 5 = S5 ABM

Enter a 1 if you are connected to a Series One ASCII/BASIC Module, or 5 if you are connected to a
Series Five ASCII/BASIC Module. For information on the Series Five ASCII/BASIC Module, refer to
GFK-0269, which is the Series Five™ ASCII/BASIC Module User’s Manual.

After entering 1 to select the Series One ASCII/BASIC Module option, one of the following messages
will be displayed on the screen.

FLOPPY DISK SYSTEM

or

HARD DISK SYSTEM

When ABMHelper starts-up, it will automatically stop the BASIC program execution in the
ASCII/BASIC Module. After a short delay the main menu, which provides access to the available
functions through selection of a menu option, is displayed. The main menu screen is shown below as it

4-6 ABMHelper

GFK-0249

appears for the ‘“‘NOSOURCE’’ mode. Options 2 and 5 will not be used if the ‘““SOURCE’’ editing
mode has been specified.

12-06-88
16:55:30
ABMHelper Revision X.XX

1l = Terminal mode

2 = Save program to disk

3 = Load a program from disk

4 = Merge a disk file into program
5 = Delete range of lines

€ = Directory of disk files

7 = Temporary exit to DOS

8 = Set/view time and date

9 = Finished with ABMHELPER

B = Setup baud rates, modes, etc.

Please enter response ...

S1 ABM Mode = 8I/80, RUN after power up

When the Series One ASCII/BASIC Module is selected, a line will be displayed on the screen indicating

the mode that the module is in. The possible modes for the Series One ASCII/BASIC Module and the
display for each of those modes are as shown below:

1. CLEAR MODE - This is only used on initial power-up. Type PROG1 when the > prompt is
displayed to save the present baud rate. Then power-down and set DIP switch 3 to the ON position.
2. NORMAL OPERATING MODES

e 8 IN/8 OUT, RUN after power up
e 8 IN /0 OUT, RUN after power up
e 0 IN /8 OUT, RUN after power up
e 4 IN /4 OUT , RUN after power up

Menu Option 1 - Terminal Mode

Menu option 1 connects the ABMHelper program to the ASCII/BASIC Module for direct input and

output from your computer keyboard and screen. When in the Terminal Mode, you can do the
following:

e Program the ASCII/BASIC Module.

e Print values.

e Display program output.

e List the program.

e Invoke the full-function editor.

e Set operating parameters.

e Perform other functions, which are described later.

ABMHelper 4-7

GFK-0249

This mode of operation provides most of the features that you will normally use and will be used most
of the time.

When this option is selected from the main menu, the following features are enabled:

LIST (or list) =~ Lists (prints) the entire program in ABM memory to the screen.

LIST 100, = All lines from 100 to the end of program are listed.
LIST 100-250 - Lists the range of lines 100 through 250.
LIST 100-100 - Lists only line 100.

Listing part or all of a program fills up the edit buffer with the same information that appears on the
screen.

Control functions that have special meaning in this mode are defined in the following table.
NOTE
Do not use the Cul/Numl.ock key sequence to start and stop screen scrolling during a LIST function.

4-8 | ABMHelper

GFK-0249

Table 4-2. Interactive/Edit Mode Control Functions

" Function Description
Cur/C Aborts the LISTING in progress, or aborts RUN mode.
Cerl/S Stops scrolling on the screen (same as F2).
Ctr/Q Starts scrolling (same as F1).
CerV/C Stops execution of the BASIC program (unless the Run/Trap mode has been enabled).

Crrl/E Invokes the full-screen editor. When the edited program is reloaded, it merges with the program in
memory (memory is not cleared before reloading). The editor works with the information obtained
from the last LIST function. This function is not used when the ‘‘SOURCE’’ editing mode has been
specified.

CurlF This also invokes the full-screen editor, however, it clears memory before reloading the
ASCII/BASIC Module. Using the full-screen editor with Cul/F is slower than Cul/E since the
entire program is uploaded to the edit buffer before editing. It is not necessary to list any of your
program before using this function, since the entire program is loaded into the edit buffer. This is
the safest method to use until you become familiar with ABMHelper operation. This function is not
used when the ‘‘SOURCE"’ editing mode has been specified.

Cual’P When in the ““NOSOURCE ** mode, prints the contents of the EDIT BUFFER. This is normally

the last thing that you “‘listed’’. If you used Cul/F for editing, the entire program will be printed.
‘When in the “‘SOURCE’’ mode, prints the file that was last edited. Be sure that your printer is

“‘on-line’’ and connected - otherwise the system will hang-up.

Cual/U This allows you to call up a user developed external routine from ABMHelper. For example, a user
routine could be a directory sort utility. In order to function properly with ABMHelper, the user
files must be named as described at the end of this chapter in the discussion on ‘‘User Supplied
Routines’’. Use of this feature is recommended only for those users who are very familiar with
MS-DOS operation.

Using the F1 - F10 Function Keys

When in the terminal emulation screen, the F1 - F10 function keys are able to perform the functions
listed in the following table:

Table 4-3. F1 - F10 Function Keys

Key Description Equivalent Control Sequence
F1 Starts scrolling. Cul/Q

F2 Stops scrolling on the screen. Cui/s

F3 Retumns to the main menu. Esc or SUPRV
F4 Returns to the main menu. Esc or SUPRV
FS Edits the listed portion of the program. CulE

Fé6 Edits the entire program. CulF

F7 Displays the filenames last used. Cui/N

F8 Prints the contents of the edit buffer to the line printer. Cul/P

F9 Aborts the listing in progress. Cul/C
F10 | Displays Help information (this page). Cull

ABMHelper 4-9

GFK-0249

Menu Option 2 - Save Program to Disk
This option not available in the ‘‘SOURCE’’ editing mode.

Selection of option 2 allows you to store the BASIC program in the ASCII/BASIC Module to your
computer’s hard disk or floppy diskettes. You are asked for the filename to save to (include the drive
ID), and then you are prompted to enter the starting and ending line numbers to be saved. You only
need to enter the line numbers if you want to save a part of the program, not the whole program. Be
careful not to use the filename of an existing program, unless it is OK to overwrite the file. If you
respond with the ENTER (or RETURN) key, to both line number prompts, all of the program is saved.

NOTE

Be aware that any program editing that you have done in the NOSOURCE mode is not saved
directly to diskette. To permanently save a program, you must use this option, or use the
SOURCE editing mode. '

Menu Option 3 - Load a Program from Disk

Selection of this option allows the ASCI/BASIC Module to be loaded from a file stored on a hard disk
or floppy diskette. When using this option, the resident program in the program development RAM in
the ASCII/BASIC Module is erased before downloading the new program. The drive ID must be
specified. Loading a program to the ASCII/BASIC Module takes longer than saving the program to disk.
The reason for this is, as each line is transmitted to the ASCII/BASIC Module, it must be converted to
executable code by the ASCII/BASIC Module.

Menu Option 4 - Merge a Disk File Into Program

This allows a program stored on diskette to be merged into a program that is resident in the
ASCII/BASIC Module RAM memory. The program in the RAM is not erased before the disk file is
downloaded. In order to work properly, the program on diskette and the program already in RAM
memory must have line numbers that do not overlap. If a line number is read in from the file that has
the same line number as an existing line number in the ASCII/BASIC Module, the new line will
overwrite the line already in memory. This function is useful if a commonly used routine is to be used in
different applications. The new application’s line numbers must be designed to not overlap the common
routine’s line numbers that will be merged later.

Menu Option 5 - Delete a Range of Lines
This option is not available in the ‘‘SOURCE’’ editing mode.

This option allows multiple lines to be deleted from the program in one operation. With menu option 1,
a line can be deleted by typing the line number with nothing following it. This is a very slow and
tedious procedure if multiple lines are to be deleted. To use this option, you will be prompted to enter
the numbers for the start and stop lines (inclusive) to be deleted.

Menu Option 6 - Directory of Disk Files

Selection of this option allows easy access to disk file directories. You will be prompted to enter the file
specifications. This specification uses the same format as the DOS directory command. The default is
to display all files in the current (RAM Disk) directory. For example, to get a directory display of all

4-10 ABMHelper

GFK-0249

files in drive A with the extension .PRG, you would type A:*.PRG in response to the file specification
prompt. The /P switch, which causes the directory listing to display only one page at a time is
automatically appended to the file specification.

Menu Option 7 - Temporary Exit to DOS

Selection of this menu option allows temporary access to all DOS functions. This option is useful for
operations such as deleting or renaming files. To return directly back to ABMHelper, type EXJT when
you have completed DOS operations. This is an especially useful feature if you are running
ABMHelper from floppy disk. You can exit to DOS, run other applications (within limits), and then
QUICKLY return to ABMHelper. The normal start-up steps are bypassed.

Menu Option 8 - Set/View Time and Date

Selection of this option provides a direct access to the DOS TIME and DATE functions. It is important
to set the correct time and date since this will be the time and date stamped on the files when they are
saved to disk.

Menu Option 9 - Finished With ABMHelper

This option is used when you are finished using ABMHelper. You are returned to DOS, and if operating
from a floppy diskette, it is suggested that you reboot your computer using your normal boot diskette. If
you don’t do this, the RAM Disk remains in effect. If you should inadvertently select this option, but
have not finished your operations in ABMHelper, immediately restart ABMHelper without rebooting
your computer. Any files previously stored in RAM Disk will be retained.

Using User-Supplied Routines with ABMHelper

The ABMHelper program provides you with the capability to easily access prewritten routines. This
feature gives you the ability to add custom features to your ABMHelper program. These user written
routines are invoked by use of the Ctrl/U character. Use of this feature by those not experienced in the
use of MS-DOS is not recommended. When a Cul/U character is entered from the terminal emulator
screen or from the main menu, ABMHelper exits to DOS and executes the file named USER. This file
must have an .EXE, .COM, or .BAT extension. The file can be a DOS batch file written by the user, or
an executable file that does something useful. If this file uses some other files or DOS commands, it is
necessary that these files be present.

To use this feature, you must copy all the required files to the ABMHelper diskette, then rename them.
If the file is a DOS batch file, it should have the name USER.BAT. If this file is directly executable, it
should be named USER.EXE or USER.COM (do not change the filename extension from the original file
specification).

NOTE
If a directly executable file (not a batch file) is being used, you must provide a way to exit from

this file to DOS. This should be a method other than the key sequence Ctrl/Alt/Del, or otherwise
resetting your computer.

The user written routines that can be added to ABMHelper can be any useful routine that you wish to
use. Some examples of typical routines are described below.

ABMHelper 4-11

GFK-0249
Example 1 - Type a Text File Using Ctrl/U

One routine you may wish to access from ABMHelper is the ability to quickly call-up and print a text
file when Cul/U is selected from the terminal emulation screen. To do this:

1. Copy the text file to the ABMHELPER working diskette, and rename it USERI.TXT.
2. Use the W-ED text editor to create the file USER.BAT and enter the following line:

TYPE USER1.TXT

3. Use ABMHelper as you nommally would. However, now when the key sequence Cul/U is
pressed, the text file will be printed.

Example 2 - Sorted Directory

To have a sorted directory available from ABMHelper, do the following:
1. Create 2 USER.BAT file by entering the following line:

DIR | USER1.EXE
2. Next, copy the executable file SORT.EXE to the ABMHelper diskette.
3. Rename SORT.EXE to USER1.EXE.

4. Execute ABMHelper in the normal manner. During start-up, ABMHelper will copy all files that
have the form USER *.* to the RAM Disk (if using a floppy disk system). To view the sorted
directory, enter the Ctrl/U key sequence.

Modifying ABMHelper for use with Fast Computers

When using a computer with a fast operating speed some of the setup parameters may have to be
modified to ensure proper operation of the ABMHelper program. The most common problem is noticed
when a program is saved from the ASCII/BASIC Module to diskette and the result is nothing in the file,
or when a Cul E or Cul F edit function is selected and the result is a blank screen.

There is a file, named ABM.PSU, included with ABMHelper which provides a means for user modifica-
tion of ABMHelper. The contents of the file as shipped from the factory are:

9600

coMl

LPT1
NOTIMEDATE
200

200

600

400

400
NOSOURCE

The first 200 in the file is the item that typically needs to be modified, depending on the computer. The
value 200 works properly on an AT computer or 2 Workmaster computer. On a faster computer, this
value must be at least 800. This file can be modified using the W-ED editor provided with ABMHelper,
or with EDT or almost any other editor that creates an ASCII file. Care must be taken not to change any
of the other parameters in the file.

4-12 ABMHelper

GFK-0249

If the value is too large, such as 800 for a Workmaster computer, after the ASCII/BASIC Module status
LED:s stop blinking (no more data being received) the Workmaster computer will be idle for a long time
before the editor screen appears.

Troubleshooting ABMHelper

The ABMHelper program provides an easy-to-use enhancement to the Series One ASCI/BASIC
Module. However, if you encounter any problems trying to operate it for the first ime, or after you have
been using it, there are some basic troubleshooting procedures to follow that should quickly solve your
problem. Following is a list of problems that you may encounter and the probable solutions to solve

these problems.
1. You cannot get the system running initially.
e Refer to the installation instructions, and carefully repeat the installation procedure.
e Ensure that all commands and other entries are entered correctly.

2. ABMHelper seems to be working properly, however you get a message indicating that ABMHelper
and the ASCII/BASIC Module are not communicating.

e Check all cable connections.
o Ensure that the ABM.PSU file has not been deleted from the disk.

3. A message is displayed stating that ABMHelper will not work with the version of ASCI/BASIC
Module that it is connected to.

e Consult your GE Fanuc - NA Distributor, GE Fanuc - NA Sales Office, or the factory.
4. Your system has been working properly, but does not now appear to be doing so.
e Enter the key sequence Cirl/C to abort operation.
¢ Enter the key sequence Cirl/Q to resume scrolling.
e If a printer is connected, and you have printed a program, be sure that the printer is on-line.

e Enter the key sequence Ctrl/Break (on an IBM ®-PC or compatible keyboard), or Cerl/BIN on a
Workmaster computer keyboard. Then Type RUN, and press the ENTER (or RETURN) key.

e If none of the above steps work, press the key sequence Cmrl/Alt/Del, to reset the computer.

* You can also reset your computer by pushing the reset button (if the computer has one), or by
cycling power to the computer.

5. You are using a floppy disk system; you get the message HARD DISK SYSTEM, and every time that
you use the LIST command, you notice that the floppy disks turn-on.

¢ It is possible that your FDMARK.DAT file has been accidently deleted from your ABMHelper
floppy diskette.

e From DOS, use the W-ED full screen editor to create the file, FDMARK.DAT.
e This file does not need to have any data in it
e When exiting the W-ED editor, use the FI/RETURN key sequence.
6. You are using a hard disk system, and you get the message FLOPPY DISK SYSTEM.
e Delete the file FDMARK.DAT from the hard disk.

7. You cannot use ABMHelper in an off-line mode without an ASCI/BASIC Module physically
connected. The system will hang up when you enter the terminal emulation mode.

@IBM is a Registered Trademark of International Business Machines Corporation

ABMHelper 4-13

GFK-0249

e If this happens, you need to either connect an ASCII/BASIC Module, or you may need to reboot
your computer.

e It is possible, however, to use the W-ED editor, or any other editor that creates ASCII text files to
create an off-line BASIC program, then download the program with ABMHelper after communi-
cations are established.

General Hints

e Do not use READY or LIST in any remarks.

e Be careful not to use keywords in variable names. For example, the following statement is illegal
since LIST is embedded in the variable name:

LET QULIST5=10
e If your systemn does seem to hang up, you can usually recover by using the Ctrl/C key sequence.

e It is also possible that you may have inadvertently entered a Curl/S (Stop Scrolling) character.
Try pressing the Curl/Q keys to begin operation again.

Chapter 5

The W-ED Editor

5-1

GFK-0249

The W-ED editor portion of this manual was written assuming the use of an IBM®-PC type keyboard.
When using the Workmaster® computer, toggle the computer’s keyboard to the 83-key mode by
pressing the Cul/Select keys. The Workmaster computer’s keys will then function as described below.

Table 5-1. PC Keyboard Conversion Chart

Workmaster Computer Keyboard Functional Description IBM PC-Type Keyboard
ABORT Insert line below o
HELP HELP F10
SUPR Esc Esc
F/9 Page Up PgUp
AFS To top of document APgUp
3/Decr Page Down PgDn
A3/Decr To bottom of document APgDn
7D To start of line Home
A1/D To start of page AHome
1/Incr To end of line End
Al/Incr To end of page AEnd

®IBM is a Registered Trademark of International Business Machines Corporation

Editor Command Summary

A summary of the editor commands useful during BASIC programming and the keystrokes required to
use them is provided below. These commands can be selected after Cul/E or Cul/F has invoked the
W-ED editor in NOSOURCE mode, or after the W-ED editor has been called in SOURCE mode. Note
that additional commands are useful when using W-ED in a general purpose text editing environment.

Fl - Bxit Alt L - mark line “PgUp - Top of file

F2 - Execute Command line Alt U - unmark block PgUp - Top of screen
F3 - Enter/Insert line Alt C - Copy block Pghn - Down 1 screen
F4 - Quit Alt M - Move block “Pgbhn - Bottom of file
F5 - Delete line Alt D - Delete block “Home ~ Start of screen
F6é - Erase to End Of Line Alt E - Erase to EOL Home - Start of line

F7 - 8plit line End - BEnd of line

F8 - Display tabs “End - End of screen
F9 - Insert line below COMMAND LINE - Esc, then:
Fl10- Belp /str/ -~ forward f£ind, -/str/ - backward £ind

Changing W-ED’s Configuration

To modify the operating parameters of the W-ED editor, type INSTALL, then press the ENTER key and
follow the on-screen instructions (On-line HELP is available (F10) for each item). You may want to do

8.2 The W-ED Editor

GFK-0249

this when using W-ED as a text editor for programming other than with the ASCII/BASIC Module. The
default settings for using W-ED as a BASIC editor are listed below.

Table 5-2. Default Settings for W-ED Editor

Default Setting Description
Cursor placement 1 Top of text area
Color definition 07H
Input formatting 3 Word wrapping; no reformat
Enter key toggle 1 ON
Border option % ON
Screen mapping $ Through ROM BIOS
Line feed char 1 YES
User paging char ¥ 007
Default lines per page 1 55

+ Can be changed to suit user’s taste.
} Change not recommended for ASCII/BASIC Module programming.

A Quick Introduction to W-ED

The following section provides you with a quick and easy introduction to using the W-ED editor.
Experienced computer users will be able to use W-ED effectively in just a few minutes because it uses
common conventions and practices.

For a more detailed discussion of using W-ED, run the demo program provided on the distribution
diskette. This quick introduction is not complete. However, it will get you started so that you will be in
a position to ‘‘know what you don’t know’’ in order to use the tutorial material or the demo program for
reference. To run the demo program, type:

DEMO (press the Enter or Return key)

then follow the instructions on the screen.

To help you use the quick introduction, the PgDn key scrolls the file down one screen at a time. PgUp
does the opposite. You can also scroll using the cursor-up and cursor-down keys.

To get a hard copy of the W-ED tutorial plus miscellaneous information, type MAKEMANL at the DOS
prompt before running ABMHelper. This creates a file named MANUAL, which can then be printed.

Starting W-ED From DOS
W-ED is activated by typing:

WED filename.ext

at the DOS prompt. If no filename is used, W-ED assumes a new file. You will be able to assign
the filename of your choice when you leave W-ED. Paths are supported by W-ED.

The W-ED Editor 5-3

GFK-0249

W-ED Function Keys
After entry to W-ED, the actions caused by pressing the other function keys are shown below.

Write file to disk Fl F2 Do task on command line (Search)

Change (Enter) key action F3 F4 Quit - abandon W-ED to DOS

Delete entire line F5 Fb6 Erase to end of line

Split line _ ¥7 F8 Set margins (L and R) and tabs (7T)
at cursor

Insert line below cursor FS Fl10 Help - browse for more information

Other W-ED Key Actions

e The Esc key moves the cursor between the TEXT AREA and the COMMAND line.
e The Esc key also abandons (aborts) operations, such as the Help screen.

e W-ED uses most IBM-PC keys nommally. The cursor keys work normally. The cursor will wrap
around line ends and cause the screen to scroll.

e Some actions are invoked by using Alt key combinations. For example, to select Alt I, hold down the
Alt key and press the I key.

e Some keys, when combined with the Cul key (written as A), have extended powers.

ATab moves the cursor right one word. AShift Tab moves the cursor left one word.
Home moves the cursor to the left margin.

AHome moves the cursor to the top left of the screen.

End moves the cursor one position beyond the last character on a line.

AEnd moves the cursor to the bottom left of the screen.

APgUp displays the beginning of the file on the screen.

APgDn displays the end of the file on the screen.

W-ED Features
* You will have an opportunity to change the file specification before you actually save a file. Simply
edit the filename using W-ED conventions.

e Invalid file specifications will not be accepted, and you will have an opportunity to correct the
specification.

5.4 ' The W-ED Editor

GFK-0249

Command Line and Text Area
There is a clear distinction between Command line functions and text area functions as listed below.

Press the Esc key to move the cursor to the TEXT area.

Press the Esc key to move the cursor to the COMMAND LINE.

When entered on the COMMAND LINE /string/ will locate the *‘string”’ after the F2 key is pressed.
Forward and backward string searches are case insensitive.

Block or Cut and Paste Operations
There are ten block operations available with W-ED.

Table 5-3. Block Operations

Operation Description
ALT L (letter L) Defines the (first) line of a block marked with the cursor. Moving the cursor and typing
ALT L marks the end of the block, if it is more than one line.
At D Deletes a block.
Alt C Copies a block starting op the line below the cursor.
At M Moves a block starting on the line below the cursor.
Alt V* Centers a block (usually a line).
Alt R* Reformats a block of text into paragraph form.
Alt J* Left and right justifies text between the margins.
At T Capitalizes all letters in a block.
Al S Makes all letters in a block lower case.

* These commands should not be used when editing BASIC programs, however they are useful in other
situations.

Tabbing and Margins

Press F8 then press the Tab key several times.

e L and R mark the margins, and T marks the tab stops.

e Changing the line and pressing Enter, sets new margms and tabs.

e Back tabbing (Shift Tab) is supported.

e Tabs are written to disk as blanks.

e Pressing the Tab key does not move text to the right, it only moves the cursor.

Extended ASCII (Graphics) Characters

e W-Ed normally allows only characters that are visible on the kcyboard to be typed.

e Alt G enables use of extended or graphics characters. A ‘“‘G” appears on the Command LINE when
this selection is made.

e Extended characters are entered using the Alt key and the number pad.

The W-ED Editor 5-5

GFK-0249

Printer Paging Control

The page length can be set using ~p.

Page breaks can be set automatically using p or manually using Alt P.
Automatic page breaks coordinate with manually set breaks.

Page breaks are visible on the screen.

Manual page breaks can be deleted just like any other line of text.
Upon re-edit, automatic page breaks are removed by W-ED.

Text Manipulation

Word wrap can be turned on and off using Alt W.
Word wrap status is displayed on the COMMAND LINE.

The Enter key can be set to insert a new line or to move the cursor down one line and to the left
margin using F3 or Alt X.

The Enter key status is displayed by an X on the COMMAND LINE.
The Backspace key moves the cursor to the left while deleting characters.

The Del (Delete) key keeps the cursor in the same position but deletes characters to the right of the
cursor.

Both the Del and the Backspace keys close-up the line by moving the rest of the line to the left.
Inserting characters and words can be done in two modes: type-over (overstrike) mode and
open-the-line (insert) mode.

Insert mode status is displayed by an I on the COMMAND LINE.

Insertions causing word wrap ‘‘open’’ the file to allow easy further manipulation (words down the left
margin).

Partial lines may be deleted to the left or right of the cursor in one or at most two key strokes. F6

deletes the line to the right of the cursor, and splitting the line using F7 and the line delete key F5 will
delete the left side of the line.

Blank lines may be inserted above the cursor position using Alt A.
Blank lines may be inserted below the cursor position using F9.

Lines may be split onto two lines by marking the position where they are to be split with the cursor
and pressing F7. When using W-ED as a general purpose editor, it is often necessary to perform a
BLOCK operation, such as DELETE or REFORMAT, however you want the operation to affect only
part of a line. To accomplish this the F7 function breaks the line into two lines (one below the other)
at the cursor location, where the block functions can then be made to perform as desired.

To insert a file in another file while using W-ED, use the following procedure:
- Start editing the file that is to have the other file inserted (call this FILE1).

- Press the Esc key to go to the command line, then type *“WED FILE2”. This will put you in
FILE2.

- Using Alt Ls, mark the beginning and end of the block to be inserted in FILE1.
- Press the F4, Return, and Esc keys. This will return you to FILEL.

- Move the cursor to the location where you want FILE1 to be inserted, and press Esc, Cual/A. The
marked part of FILE2 will be inserted at the cursor location.

Global search and replace can be done using the W-ED editor by following these steps:

5-6 The W-ED Editor

GFK-0249

- Be sure W-ED is in the appropriate (usually overstrike) mode.

- Press the Esc key and enter the string to be replaced on the command line, e.g. *‘/ 0ld /”’. If you
don’t want an embedded ‘‘old’’ to be replaced, e.g. in the word ‘‘bold’’, be sure to include spaces
before and/or after the string to be replaced as shown above.

- Type Alt Y. You will see a blinking Y on the command line indicating that the next sequence of
keys will be repeated.

- Press the F2 key. The cursor will move to the first occurrence of ‘‘0ld”’. Type the new information

2

over the old, e.g. “‘new”’.
- Then press Cul/Y, Cul/Y. All occurrences of ‘‘old’’ will be replaced by ‘‘new’’.
- To abort the replace operation, press the Esc key.

e When using the W-ED editor for general purpose use, a messy document is often temporarily created
during the process as a side effect of W-ED operation. To clean-up the messy area, mark the
beginning and end of the area with Alt L, then use Alt R or Alt J to reformat the area, and Alt U to
‘‘unmark’’ the area.

e When using the W-ED editor for general use, it is often necessary to indent a paragraph or other
section of the document. This can be accomplished by resetting the L tab (F8) to the required indent
position, then use Alt L, Alt R and Alt J keys as described above to reformat that area. Don’t forger to
set the L tab back to its original location. Also, do not use the Alt R or Alt J reformat commands

when editing an ASCII/BASIC Module file. If this is done accidently, you should quit by using the F4
key, then start the edit session over again.

The information presented above should be sufficient to get you started. With a little practice, you will
soon master using W-ED.

W-ED Messages

W-ED messages are listed below alphabetically. Each message is followed by an explanation and a
suggested action. Messages which appear when exiting W-ED are marked with an asterisk.

ACCESS DENIED. CHECK SPECIFICATION. *

You attempted to edit a file marked as read only. To edit the file, the file attribute in the DOS Disk
Directory must be modified. You attempted to save a file to diskette without giving it a filename.

ARE YOU SURE? (Y/N)

You made changes to the file and pressed the F4 key to QUIT. The changes made to the file will be lost
and the file will remain as it was before you edited it. Decide if this is the action you intended; if not,
press the Esc key cancelling the QUIT command.

AT END-OF-FILE !!!!

In non-word wrap mode, if you attempt to type past the margin on the last line, this message will appear.
On lines before the last line, the cursor will wrap to the beginning of the next line. You can create a new
line by using the F9 key.

BAD TARGET LOCATION

You attempted to move or copy a block or line into itself. Move the cursor to another location, or
redefine the block of text to be manipulated.

The W-ED Editor | 5.7

GFK-0249

BUFFER IS FULL......

The buffer in W-ED holding the file being edited is full. No more text can be added to the file. Save the
file using the function key F1, and then re-enter W-ED with the same filename. Find a convenient or
logical place to divide the file into two parts. Delete one part and save the file under a new filename.
Re-enter W-ED again with the original file - the one that was too large. Delete the other part of the file
and save the file under a second new name. Now each part of the original file can be edited further.

The DOS copy command will let you recombine the two parts for printing or other purposes. For
example, if FILETOO.BIG fills the buffer and you divided it into FILETOO.ONE and FILETOO.TWO:

COPY FILETOO.ONE+FILETOO.TWO BIGFILE.NEW
BYTES FROM DISK ------ NO EOF: nnon *
BYTES OUT OF EDITOR -- NO EOF: nnn

BYTES TO DISK --eeee-- INCLUDING EOF: nnn

The above message is displayed for information only when a file is saved to disk. “BYTES FROM
DISK’ is the decimal number of bytes read into W-ED from disk, EXCLUDING the end of file
marker(s).

*“BYTES OUT OF EDITOR”’ is the decimal number of bytes returned from W-ED, again, EXCLUD-
ING the end of file marker(s).

“BYTES TO DISK’’ is the decimal number of bytes actually written to disk from W-ED. This includes
the end of file marker(s). This number should always be a multiple of 128.

CANNOT ACCESS DISK X ...
Disk drive X is not available. Save the information on an available drive.

CANNOT ALTER PAGING

You attempted to modify an AUTO or USER PAGING line. Deleting the line (e.g. F5) is the only
alteration allowed. All AUTO PAGING may be deleted by typing Cul/P, Cul/D.

CMND NOT RECOGNIZED

Only searching and moving forward or backward ‘‘nn’’ lines are valid in command line operations. The
search command starts with ‘‘/*” or *‘-/"’ and is followed by a string of characters to locate. Moving
forward or backward ‘‘nn’’ lines is commanded by typing a number or a minus sign and a number

respectively.
DISK IS WRITE PROTECTED *

You attempted to save a file to a write protected diskette. Change the file specification to specify another
disk drive or replace the disk with another one which is not write protected.

5.8 The W-ED Editor
e e —————

GFK-0249
ENTER ESC (*D=DEL)
After pressing AP to define auto paging, this message appears defining the options available in this
mode. ENTER will accept the number of print lines/page specified, and cause the AUTO PAGING to

occur. Esc will allow you to escape from the auto paging mode. AD will remove all auto paging lines
- previously entered into the file. '

ENTER IF SAME -- OTHERWISE MODIFY AS NEEDED *

When the F1 (FILE) function key is pressed you may save the file being edited under a new name, or
define a new path. If you wish to save the file under a new name or a new path, type the new filename
over the old one, and press ENTER. If no change is desired, press ENTER.

FIELD IS IN MARGIN

While searching for a string of characters using the ‘‘/’” command on the command line, the target string
was found; however, the string starts to the left of the left margin or to the right of the right margin.
Since the cursor cannot travel outside the margins set by the tab command, W-ED puts the cursor at the
margin and prints this message on the message line.

When margins are reset during editing, the message is displayed if the cursor is outside the area defined
by the new margins. Moving the cursor causes the message to disappear.

FILE SPECIFICATION ACCEPTED..... *
The filename or path of the file you specified to save are acceptable to DOS.

FILE TOO LARGE TO LOAD INTO EDITOR

W-ED detected that the file you have named to edit will not fit into W-EDs internal buffer. W-ED
cannot be used to edit the file.

FN: 1F 4Q 5D 91 10H
Normal message displayed. The abbreviations are :

1F ==> Fl1 = FILE (Save changes)

4Q ==> F4 = QUIT (Don’t save changes)
5D ==> F5 = DELETE LINE

91 ==> F9 INSERT LINE

10H ==> F10 = HELP

ILLEGAL DRIVE SPECIFIED *

Valid drive specifications are A and B if you have 1 or 2 drives attached; A, B, and C if you have 3
drives attached, etc. Attempting to access a drive, e.g. drive F, which does not exist in your system will
cause this message to appear.

INSUFFICIENT BUFFER SPACE TO PROCESS FILE

The file you attempted to load into W-ED is too big for W-ED to handle. W-ED will handle a maximum
of 750 lines of 78 characters.

The W-ED Editor 5.9

GFK-0249
INVALID DRIVE OR NOT ENOUGH ROOM FOR FILE *

When DOS attempts to write a file to disk, if the drive is not specified correctly, or if there is insufficient
room on the diskette to hold the file to be written to disk, DOS returns this error message. In W-ED, it

is most likely that there is insufficient room on the disk, as an illegal drive specification would normally
be detected earlier.

LINE ALREADY FULL

You attempted to insert characters in a line, and word wrap is off. When word wrap is on, the last word
on the line will be moved to a new line just below the current line. When word wrap is off, the last word
on the line will not be moved to a new line. Delete a character, press Alt W to turn on word wrap, and
then continue inserting characters.

MAX 15 TABS ALLOWED
You specified more than 15 tab stops, including margins. W-ED will handle no more than 15.

NO BLOCK DEFINED

Before you can use the block commands such as copy, delete, or move a block of text, you must define
it using Alt L. Mark the block of text to be operated on with Alt L marking the beginning and ending
lines. Then use the block command such as copy, delete, or move.

NOT ALLOWED HERE

When the cursor is on the command line, the block commands and Alt A and Alt E cannot be used since
they require the cursor to be positioned in the text area at the action site. Move the cursor to the desired
position, and execute the command again.

NOT FOUND

The string of characters specified in a search command was not found in the file.

OLD BLOCK STILL SET
A block is already defined somewhere. Unblock it with Alt U, and then define a new block.

SPECIFIED PATH NOT FOUND *

You apparently altered the path or name during an F1 (FILE) operation and the specified path is not
valid. Save the file using another path, then check if the subdirectory exists and the path is correct.

TABS:(ESC) ENTER
Indicates that the tab mode has been entered by pressing F8.

TOO MANY OPEN FILES

If W-ED is called from another program, it is possible that too many files have already been opened, and
the new file which is to be read by W-ED is above the maximum.

5-10 The W-ED Editor

—_—— e
GFK-0249

TRY SMALLER BLOCK

You made a block (using Alt L commands) too large for W-ED to work with. W-ED reserves some of
the file buffer space for uses such as moving blocks or text. As a file grows, this area diminishes. Use
Alt U to unblock the block you defined, and perform the block activity in several steps.

-.NEW FILE....

A file of the specification name in the given path was not found. W-ED assumes that a new file is being
created and displays this message. If you are trying to edit a file you created previously, check the path
to the file and make sure you have the correct diskettes in the drive.

??? MARGINS IGNORED

When setting margins, the leftmost tab must be an ‘‘L’’ and the rightmost tab must be an ‘‘R’’. If this is
not the case, or if you have specified multiple Ls and Rs, you will get this message.

(Cursor-up symbol) OR (Cursor-down symbol) - ESC TO EXIT

From inside the HELP panel, pressing the up or down arrow keys scrolls the HELP screen; pressing Esc
retums you to the edit mode.

Chapter 6

6-1 Commands

=
GFK-0249

Command: RUN(cr)

Action Taken:

After RUN(cr) is typed, all variables are set equal to zero, all BASIC-evoked interrupts are cleared, and
program execution begins with the first line number of the selected program. The RUN command and
the GOTO statement are the only way you can place the MCS BASIC-52 interpreter in Run mode from
the Command mode. Program execution may be terminated at any time by typing Cul/C on the
keyboard.

Variation:

Unlike some BASIC interpreters that allow a line number to follow the RUN command (i.e., RUN 100),
MCS BASIC-52 does not permit such a variation on the RUN command. Execution always begins with
the first line number. To obtain the same functionality as the RUN(In num) command, use the GOTO(In
num) statement in Command mode.

Example:

>10 FOR I=1 TO 3
>20 PRINT I

>30 NEXT I

>RUN

1
2
3

READY
>

Command: CONT(cr)

Action Taken:

If a program is stopped by typing Ctrl/C on the keyboard or by executing a STOP statement, you can
resume execution of the program by typing CONT(cr). Between stopping and restarting the program,
you may display the values of variables or change the values of variables. However, you may nor
CONTinue if the program is modified during the STOP, or after an error.

Variation::

None.

6-2 Commands

GFK-0249
Example:

>10 FOR I=1 TO 10000
>20 PRINT I

>30 NEXT I

>RUN

wmawn e

= (TYPE Ctrl C ON KEYBOARD)
STOP - IN LINE 20
REARDY
>PRINT I
€
>I=10

>CONT

Command: LIST(cr)

Action Taken:
The LIST(cr) command prints the program to the console device. Note that the LIST command
‘‘formats’’ the program in an easy-to-read manner. Spaces are inserted after the line number, and before
and after the statement. This feature is designed to aid in debugging MCS BASIC-52 programs. The
‘“‘listing”’ of a program may be terminated at any time by typing Cul/C on the keyboard.
Variation:
Two variations of the LIST command are possible with MCS BASIC-52. They are:

LIST [1ln num] (cr)

and

LIST [1n num] = [1n num] (cr)

The first variation causes the program to be printed from the designated line number (integer) to the end
of the program. The second variation causes the program to be printed from the first line number
(integer) to the second line number (integer).

NOTE
The two line numbers must be separated by a dash (-).

Commands 6-3

GFK-0249

Example:

READY

>LIST

10 PRINT "LOOP PROGRAM"
20 FOR I=1 TO 3

30 PRINT I

40 NEXT I

50 END

READY
>LIST 30-30
30 PRINT I

READY

>LIST 20-40
20 FOR I=1 70 3
30 PRINT 1
40 NEXT I

Command: NEW(cr)

Action Taken:

When NEW(cr) is entered, MCS BASIC-52 deletes the program that is currently stored in RAM
memory. In addition, all variables are set equal to zero, and all strings and BASIC-evoked interrupts are
cleared. The real time clock, string allocation, and internal stack pointer value (locaton 3EH) are not
affected. In general, NEW(cr) is used simply to erase a program and all variables. However, this
command does nor erase the contents of the archival storage area or the permanent storage area.

Command: NULL [integer](cr)

Action Taken:

The NULL [integer](cr) command determines how many NULL characters (00H) MCS BASIC-52 will
output after a carriage return. After initialization, NULL = 0. The NULL command was needed when a
‘‘pure’’ mechanical printer was the most common 1/O device. Most modem printers today, however,

contain some kind of RAM buffer that virtually eliminates the need to output NULL characters after a
carriage return.

The NULL count used by MCS BASIC-52 is stored in internal RAM location 21 (15H). The NULL
value can be changed dynamically in a program by using a DBY(21)=[expr] statement. The [expr] can
be any value between 0 and 255 (OFFH), inclusive.

Variation:

None.

Description of GE Fanuc - NA Custom Commands

Several custom commands have been developed by GE Fanuc - NA especially for use with the Series
One ASCI/BASIC Module. These commands can also be used with the Series Five ASCI/BASIC
Module. The custom commands add programming capability in addition to the Intel MCS BASIC-52

6-4 Commands

GFK-0249

programming language built into the ASCII/BASIC Modules. The customn commands are described
below.

Transfer Command: TRANSFER R/W, FORMAT, ABMLOC, FLAG

Table 6-1. R/W Parameter Description

Value Description
R Read data from the Series Five CPU.
W Write data to the Series Five CPU.

A non R, W or incorrect format for I/O setup will result in the error message WRONG OR MISSING
PARAMETER IN LINE XXXX.

NOTE

Only the 8 input/0 output mode is invalid for W (Write), all other modes are valid for Write.
Only the 8 output/0 input mode is invalid for R (Read), all other modes are valid for Read.

If FORMAT = 2, the data in the Series One CPU is in BINARY format.
If FORMAT = 4, the data in the Series One CPU is in BCD format.

Data Format and Range

Valid limits for data range for the different addressing modes are listed below. These reference ranges
must be followed for proper operation of your program.

Table 6-2. /O Reference Ranges

FORMAT | 8 Out (R) 8In (W) | 4 Out (R) 4 In (W)
2, BIN 0-255 0-255 0-15 0-15
4, BCD 0-99 0-99 0-9 0-9

For 8 Out (R), 4 Out (R) the data from the Series One CPU is checked to ensure that it complies with
the valid ranges.

For 8 Input (W), 4 Input (W) the data in the variable to be sent is checked.

ABMLOC

A scalar or array variable name used in the program, will contain data to/from the Series One CPU.
ABMLOC should be defined before the execution of the Transfer command. If the Transfer command
is executed without ABMLOC being previously defined, FLAG will be set to 2. If a statement such as
ABMLOC=0 is later executed, it becomes defined at that time. On subsequent transfer attempts,
ABMLOC will then be defined, so Flag will not equal 2 from that point on. To define it earlier in the
program, a statement such as X=0 can be used, where X is the ABMLOC parameter.

Commands 6-5

GFK-0249

FLAG

A scalar or array variable name used in the program, which shows the status of the transfer command.
The values for the FLAG command, and the associated transfer status are:

Flag Value Status
-1 Transfer is not completed
0 Transfer has been completed successfully
2 ABMLOC not yet defined
3 Range error in the data to be transferred
None of the above Error condition

Example of Using Flag
The following programming example shows how Flag can be used in a program.

1000 REM «=- FLAG USAGE EXAMPLE ~=--

1010 REM

1020 1ET I = 0

1030 LET FLAG = 9§

1040 TRANSFER W, 2,I,FLAG

1050 IF FLAG = -1 GOTO 1050 : REM TRANSFER NOT COMPLETE
1060 IF FLAG <> 0 GOTO 2000 : REM ERROR

1070 REM «=- TRANSFER COMPLETE =~~~

1080 REM -~- CONTINUE WITE REMAINDER OF PROGRAM ===

2000 REM =--- ERROR ROUTINE =~--
2010

Example of Timeout to Detect CPU in STOP Mode

The following program example sets a value, which allows the program to detect when the CPU is in the
STOP mode.

1000 IET X = O

1010 LET FLAG = 99

1015 CLOCK 1

1020 LET DBY (71) = 0 : REM SET FRACTIONAL PORTION OF TIME T0 O
1025 L1ET TIME = O

1030 TRANSFER R, 2,X,FLAG

1040 IF TIME >1.0 THEN GOTO 2000
1050 IF FLAG <> 0 THEN GOTO 1040
1060 GOTO 1020

2000 PRINT "TIMEOUT"

2010 GO TO 1020

Functions Used in RUN Mode
All of the following functions can be used in mathematical expressions when writing a BASIC program.

6-6 Commands

GFK-0249
LSTR
This function returns the length of a string, i.e., the number of characters contained in the string.
LSTR $(n),var

Where n = the number of the string variable, and var = the variable where the length of the string will be
stored.

SPLIT
This functon is used to read a single bit or a field of bits.
SPLIT [varl], [var2],S,L

Where varl is the variable to be examined; var2 is the target variable; S is the starting bit (valid range 1
to 16); L is the number of consecutive bits to be addressed moving left to right from the starting bit. An
example of this function and the results of using it are shown below.

SPLIT [varl], [var2],9,3

bit 16 15 14 13121110 9 8 7 6 5 4 3 2 1
data x x 2 x x x x 1 1 0 x x x x x X
l |
varl integer bit pattern
bit 16 15 14 13121110 9 8 7 6 5 4 3 2 1
data ©o 0o 0 000 OO OO O O O0 1 1 0

var2 integer bit pattern

x = don’t care

MOVE
This function is used to set a single bit or a field of bits.
MOVE [var2]), [varl],S,L

Where varl is the target variable where the bit or bits will be set; var2 is the source variable; S is the
starting bit, with a valid range of 1 to 16; and L is the number of consecutive bits to be addressed
moving left to right from the starting bit. An example of using this function is shown below.

MOVE [var2],[varl], 12,4

bit 16 15 14 13121110 S 8 7 6 5 4 3 2 1
data c 0o 0o 0 00 0 00 0 0 0 1 0 1 1
I I

var2 integer bit pattern
bit 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1
X X X X X X X X

9
data x x x x 1 0 1 1
l

x = don’t care varl integer bit pattern

Commands 6-7

GFK-0249

Error condition:

* Starting bit >16 or <1
* The value of the length parameter exceeds the value of the start
address, (S < L).

SWITCH

This function, when executed, returns the value of the setting of the DIP switch on the ASCII/BASIC
Module.

SWITCHE [var]

MATCH

This is a functional operator which will set a variable flag with the value -1 (true) or O (false) as a result
of a string comparison.

The form of the command as shown below is used to test the content of the string to match the data
format specified by the mask shown in brackets:

MATCH [string], (99AAA999XX), flag

Where 9 can be any number from 1 to 9; A can be any letter a to z or A to Z; X can be any valid ASCII
character; flag is the variable that will contain the result of the comparison. An example of using this
function is given below.

10 INPUT $(1)

20 MATCE $(1),(a...2 , A...2),f1
30 IF £f1=0 THEN 10 ELSE 40

40

This function will also test whether two strings are identical. The form of this function is shown below,
followed by an example of its use.

MATCH [string], "STRING", flag

MATCH [string]),$(n),flag n = number of the string

10 INPUT $(1)

20 MATCE $(1),"yes", £l

30 IF £f1 THEN 100

40 MATCE $(1), "no",£12

50 IF £12 THEN 200 ELSE 10

6-8 Commands

GFK-0249
INPB

The INPUT statement is normally used to input data to the program from a keyboard. This data is
normally ASCI coded (refer to the ASCII code chart in Appendix E). When using INPUT, a 03H
coming in the port will be interpreted as a Control C,and will abort processing. Similarly, 13H will be
interpreted as a Control S and inhibit output from the module. This is normally desirable for keyboard
processing.

For some applications, however it is necessary to read all the data, store it away, and not perform any
actions upon the data, except as specified by the BASIC program itself. A common example is a
communications protocol which uses binary (not ASCI coded hex) data.

The INPB instruction was developed to meet this need. This instruction gets a specified number of
characters from the serial port, and stores them in the specified string. If the timeout value is reached,
and the specified number of characters has not been fetched, the instruction sets flag to an error value,
and continues with the next BASIC instruction.

The format for the INPB instruction is as shown below.

INPB $(n), number of characters, timeout value, flag
where:

$(n) - array to store characters - STRING must have already
allocated space.

number of characters - 1 to length $(n) - must be a constant, and
cannot exceed the length of $(n).

timeout value - 1 to 65535 ms.

no error

timeout

Number of characters larger than $(n)
Number of characters <1, or timeout <0, or
timeout >65535, or number of characters
not defined as a constant.

flag = variable - 0

1
2
3

It should be noted that the string is not cleared before the INPB instruction writes to it. If, for example,
an INPB instruction writes ten characters to string $(1), and another INPB instruction writes two
characters to string $(1), then string $(1) will consist of the first two characters from the second INPB,
and the last eight characters from the first INPB. Also, FLAG must be declared prior to executing this
instruction.

NOTE

While INPB is waiting for characters, the module will not respond to Curl C (Abort). For a
program using INPB, it may be necessary to enter the Ctrl C sequence several times to Abort the
program.

Commands Used in Command (Monitor) Mode

RENUM@

This command is used to renumber all program lines from the specified starting line to the last line in
the program, and all references to these lines in the program. This function allows you to enter new

Commands 6-9

GFK-0249

program lines where previously there had been no room for these lines. The renumbered program can
start with any line number, and affect only part of the old program. The valid formats for this command
are as shown below.

RENUM@

RENUME Newline

RENUME Newline, Startline

RENUME Newline, Startline [increment]

Where Newline is the first line number to appear in the new (renumbered) program, Startline is the first
line number in the old program which will be affected by the RENUM@ command (all subsequent lines
will also be affected), and increment is the difference between successive lines in the new (renumbered)
program..
Error conditions for this command are:

* Startline does not exist

* INCR is < 1
* Line number generated is >65535

The default conditions for this command are:

Newline = 10
Startline = first line of program
Increment = 10

All instructions that branch to lines that are renumbered (GOTO, GOSUB, ON GOTO, ON GOSUB,
ONERR, ONTIME) are automatically changed to conform with the new line number. An example of
using this command is shown below.

Original Numbering Command New Numbering
10 a=1 --- RENUM@ 10,10,10 ==-> 10 2=l
20 B=2 20 B=2
30 GoTO 101 30 GOTO 110
90 C=3 80 C=3
100 D=4 100 D=4
101 E=5 110 E=5
102 F=6 120 F=6
DELPRM

This instruction deletes a program stored in the Archival Storage Area that had been saved previously
with the BURN instruction. This instruction is valid only in the command mode and has the following
form.

DELPRM [constant]

The constant value refers to a sequential program number that must be within the range of the number of
available programs stored in the Archival Storage Area. The constant value can be any number in the
range of 1 to 255.

6-10 Commands

GFK-0249

Execution of the DELPRM X instruction will delete program X which was saved using the BURN
instruction. The remaining programs will be compressed to save memory space, and the remaining
programs will be renumbered.

Example of Use

Assume that there are five programs stored in the Archival Storage Area, and the last program’s highest
memory used is AOOOH. If program number four occupies 1000H of space, (from 9000H to AOOOH),
and is deleted by using DELPRM 4, after the deletion the program that was number five will be number
four, and the end of the new program four is at 9000H. If another program is saved using BURN, it will
be program number five.

Error Conditions

e If Constant = < 1, or >255 Constant out of range

¢ Constant is greater than the number of programs stored in the Archival Storage Area Constant out
of range

e Executed in RUN mode Command mode only

Chapter 7

7-1 Archival Storage Area File Commands

GFK-0249

Commands: RAM(cr) and ROM (integer) (cr)

Action Taken:

These two commands tell the MCS BASIC-52 interpreter whether to select the current program out of
RAM or the archival storage area. The current program is the one that will be displayed during a LIST
command and executed when RUN is typed.

RAM

When RAM(cr) is entered, MCS BASIC-52 selects the current program from RAM memory. This is
usually considered the ‘‘normal’’ mode of operation. It is the mode in which users interact with the
command interpreter.

ROM

When ROM (integer) (cr) is entered, MCS BASIC-52 selects the current program out of the Archival
Storage Area. If no integer is typed after the ROM command (i.e., ROM(cr)), MCS BASIC-52 defaults
to ROM1. Since the programs are stored sequentially in the Archival Storage Area, the integer
following the ROM command selects which program you want to run or list. If you attempt to select a
program that does not exist (i.e., you type in ROMS8 and only 6 programs are stored in the Archival
Storage Area), the message ’ERROR: PROM MODE’ will be displayed.

MCS BASIC-52 does not transfer the program from the Archival Storage Area to RAM when the ROM
mode is selected, so you cannot edit a program in ROM. If you try to do so by typing in a line number,
the message 'ERROR: PROM MODE’ will be displayed. The following command to be described,
XFER, allows you to transfer a program from the Archival Storage Area to RAM for editing purposes.

Since the ROM command does not transfer a program to RAM, it is possible to have different programs
in ROM and RAM simultaneously. You can “‘flip’’ back and forth between the two modes at any time.
Another added benefit of not transferring a program to RAM is that all of the RAM memory can be used
for variable storage if the program is stored in the archival storage area. The system control values,
MTOP and FREE, always refer to RAM and not the Archival Storage area.

Variation:

None.

Command: XFER(cr)

Action Taken:

The XFER (transfer) command transfers the currently selected program in the archival storage area to
RAM and then selects the RAM mode. If XFER is typed while MCS BASIC-52 is in the RAM mode,
the program stored in RAM is transferred back into RAM, and RAM mode is selected. The net result is
that nothing happens. After the XFER command is executed, you may edit the program in the same
manner any RAM program may be edited.

7-2 Archival Storage Area File Commands

GFK-0249
Variation:

None.

Command: BURN(cr)

Action Taken:

The BURN command programs the Archival Storage Area with the current selected program. The
current selected program may reside in either RAM or the Archival Storage Area.

After BURN(cr) is typed, MCS BASIC-52 displays the number the program will occupy in the archival
storage area.

Example:

>list

10 FOR I=1 TO 10
20 PRINT I

30 NEXT I

RERDY
>BURN
12

READY
>RONM 12

READY

>LIST

10 FOR I=]1 T0 10
20 PRINT I

30 NEXT I

READY
>

In this example, the program just placed in the Archival Storage Area is the twelfth program stored.

Variation:

None

Chapter 8

8-1 Statements

GFK-0249%

Statement: CLEAR
Mode: COMMAND and/or RUN

Type: CONTROL

The CLEAR statement sets all variables equal to 0 and resets all BASIC-evoked interrupts and stacks.
This means that after the CLEAR statement is executed, an ONTIME statement must be executed before
MCS BASIC-52 will acknowledge interrupts. ERROR trapping via the ONERR statement will also not
occur until an ONERR [integer] statement is executed. The CLEAR statement does not affect the real
time clock that is enabled by the CLOCK1 statement. CLEAR also does not reset the memory that has
been allocated for strings, so it is nor necessary to enter the STRING [expr], [expr] statement to
reallocate memory for strings after the CLEAR statement is executed. In general, CLEAR is simply
used to “‘erase’ all variables.

Variation:

None.

Statements: CLEARI and CLEARS
Mode: COMMAND and/or RUN
Type: CONTROL

CLEARI (Clear Interrupts)

The CLEARI statement clears all the BASIC-evoked interrupts. Specifically, the ONTIME interrupt is
DISABLED after the CLEARI statement is executed. The real-time clock, which is enabled by the
CLOCK1 statement, is not affected by CLEARI. This statement can be used to selectively DISABLE
interrupts during specific sections of your BASIC program. The ONTIME statement must be executed
again before the specific interrupts will be enabled.

CLEARS (Clear Stacks)

The CLEARS statement resets all of MCS BASIC-52’s stacks. The control and argument stacks are
reset to their initialization value, 254 (OFEH) and 510 (IFEH), respectively. The internal stack (the
8052AH’s stack pointer, special function register, SP) is loaded with the value that is in intemal RAM
location 62 (3EH). This statement can be used to ‘‘purge”’ the stack if an error occurs in a subroutine.
In addition, this statement can be used to provide a ‘‘special’’ exit from a FOR-NEXT, DO-WHILE, or
DO-UNTIL loop.

8-2 Statements
e —————————————————————

GFK-0249
Example:

>10 PRINT "MULTIPLICATION TEST, YOU HAVE 5 BECONDS"
>20 FOR I = 2 TO 9

>30 N = INT(RND*10) : A = N*I

>40 PRINT "WHRT IS *,N,"*",I,"?": CLOCKl

>50 TIME = 0 : ONTIME 5,200 : INPUT R:IF R<>A THEN 100
>60 PRINT "TEAT’S RIGHET":TIME=0:NEXT I

>70 PRINT "YOU DID IT, GOOD JOB"™:END

>100 PRINT "WRONG, TRY AGAIN":GOTO 50

>200 REM WASTE CONTROL STACK, TOO MUCE TIME

>210 CLEARS:PRINT "YOU TOOK TOO LONG":GOTO 10

NOTE

When the CLEARS and CLEARI statements are LISTED, they will appear as CLEAR S and
CLEAR], respectively.

Statements: CLOCK1 and CLOCKO0
Mode: COMMAND and/or RUN
Type: CONTROL

CLOCK1

The CLOCK(1 statement enables the real-time clock feature resident on the MCS BASIC-52 device. The
special function operator, TIME, is incremented once every 5 milliseconds after the CLOCK1 statement
has been executed. The CLOCK1 statement uses TIMER/COUNTER 0 in the 13-bit mode to generate

an interrupt once every 5 milliseconds. Because of this, the special function operator, TIME, has a
resolution of 5 milliseconds.

MCS BASIC-52 automatically calculates the proper reload value for TIMER/COUNTER 0 after the
crystal value has been assigned (i.e. XTAL = value). If no crystal value is assigned, MCS BASIC-52
assumes a value of 11.0592 mHz. The special function operator TIME counts from O to 65535.995
seconds. After reaching a count of 65535.995 seconds, TIME overflows back to a count of zero.

Because the CLOCK1 statement uses the interrupts associated with TIMER/COUNTER 0 (the CLOCK1
statement sets bits 7 and 2 in the 8052AH’s special function register, IE), you may not use this interrupt
in an assembly language routine if the CLOCKI1 statement is executed in BASIC. The interrupts
associated with the CLOCK1 statement cause MCS BASIC-52 programs to run at about 99.6% of
normal speed. That means that the interrupt handling for the real time clock feature only consumes about
4% of the total CPU time. This very small interrupt overhead is attributed to the very fast and effective
interrupt handling of the 8052AH device.

CLOCKO

The CLOCKO (zero) statement disables or ‘‘tumns off’’ the real time clock feature. This statement clears
BIT 2 in the 8052AH’s special function register, IE. After CLOCKO is executed, the special function
operator, TIME, will no longer increment. The CLOCKO statement also returns control of the interrupts
associated with TIMER/COUNTER 0 back to the user, so this interrupt may be handled at the assembly

Statements 8.3

GFK-0249

language level. CLOCKO is the only MCS BASIC-52 statement that can disable the real time clock.
CLEAR and CLEARI will nor disable the real-time clock.

Variation:

None.

Statements: DATA - READ - RESTORE
Mode: RUN
Type: ASSIGNMENT

DATA

DATA specifies expressions that may be retrieved by a READ statement. If multiple expressions per
line are used, they must be separated by a comma.

READ

READ retrieves the expressions that are specified in the DATA statement and assigns the value of the
expression to the variable in the READ statement. The READ statement must always be followed by
one or more variables. If more than one variable follows a READ statement, they must be separated by
a comma.

RESTORE

RESTORE “‘resets’’ the internal read pointer back to the beginning of the data so that it may be read
again.

Example:

>10 FOR I=l 70 3

>20 READ A,B

>40 NEXT I

>50 RESTORE

>60 READ A,B

>70 PRINT A,B

>80 DATA 10,20,10/2,20/2,8IN(PI),COS(PI)
>RUN

10 20
5 10
0 -1
10 20

Variation:

None.

8-4 Statements

GFK-0249

Statement: DIM
Mode: COMMAND and/or RUN

Type: ASSIGNMENT

DIM reserves storage for matrices. The storage area is first assumed to be zero. Matrices in MCS
BASIC-52 may have only one dimension, and the size of the dimensioned array may not exceed 254
elements. Once a variable is dimensioned in a program, it may not be redimensioned. An attempt to
redimension an array will cause an ARRAY SIZE error. If an arrayed variable is used that has not been
dimensioned by the DIM statement, BASIC will assign a default value of 10 to the array size. All arrays
are set equal to zero when the RUN command, NEW command, or CLEAR statement is executed. The
number of bytes allocated for an array is 6 times the (array size plus 1). So, the array A(100) would
require 606 bytes of storage. Memory size usually limits the size of a dimensioned array.

Variation:

More than one variable can be dimensioned by a single DIM statement (i.e., DIM A(10), B(15),
A1(20)).

Example:

DEFAULT ERROR ON ATTEMPT TO RE-DIMENSION ARRAY

>10 A(5)=10 - BASIC assigns default of 10 TO ARRAY SIZE HERE
>20 DIM A(S) = ARRARY CANNOT BE RE-DIMENSIONED
>RUN

ERROR: ARRAY SIZE - IN LINE 20

20 DIM A(S)

Statements 8-5

GFK-0249

Statements: DO - UNTIL [rel expr]
Mode: RUN

Type: CONTROL

The DO - UNTIL [rel expr] staternent provides a means of ‘‘loop control’’ within an MCS BASIC-52
program. All statements between the DO and the UNTIL [rel expr] will be executed until the relational
expression following the UNTIL statement is TRUE. DO - UNTIL statements can be nested.

Example:

SIMPLE DO-UNTIL NESTED DO-UNTIL
>10 A=O >10 DO : A=h+l : DO : B=B+4l
>20 DO >20 PRINT XA,B,A*B
>30 A=A+l >30 UNTIL B=3
>40 PRINT A >40 B=0
>50 UNTIL A=4 >50 UNTIL A=3
>60 PRINT "DONE" >RUN
>RUON

11 1
1 12 2
2 13 3
3 2 1 2
4 2 2 4
DONE 2 3 6

3 1 3
READY 3 2 6
> 3 3 9

READY

>

NOTE

It is not possible to Exit the loop by use of a GOTO statement from the middle of the loop. Ifitis
desired to Exit the loop before it’s normal termination, you must set the loop variable equal to its
Exit value inside the loop.

8-6 Statements

GFK-0249
Statements: DO - WHILE [rel expr]

Mode: RUN

Type: CONTROL

The DO - WHILE [rel expr] statement provides a means of ‘‘loop control”’ within an MCS BASIC-52
program. This operation of this statement is similar to the DO - UNTIL [rel expr], except that all
statements between the DO and the WHILE [rel expr] will be executed as long as the relational
expression following the WHILE statement is true. DO - WHILE statements can be nested.

Example:

SIMPLE DO-WEILE NEESTED DO-WEILE
>10 DO >10 DO : A=A+l : B=B+l
>20 A=A+l >20 PRINT A,B,A*B
>30 PRINT A >30 WEILEL B<>3
>40 WEILE A<4 >40 B=0
>50 PRINT "DONE" >50 UNTIL A=3
>RUN >RUN
1 111
2 12 2
3 1 3 3
4 2 1 2
DONE 2 2 4

2 3 6
READY 3 1 3
> 3 2 6

3 3 9

READY

>

NOTE

It is not possible to Exit the loop by use of a GOTO statement from the middle of the loop. If itis
desired to Exit the loop before it’s normal termination, you must set the loop variable equal to its
Exit value inside the loop.

Statement: END
Mode: RUN

Type: CONTROL

The END statement terminates program execution. The continue command, CONT, will not operate if
the END statement is used to terminate execution (i.e., a CAN’T CONTINUE error will be printed to the
console). The last statement in an MCS BASIC-52 program will automatically terminate program
execution if no END statement is used.

Statements 8-7

GFK-0249
Example:
LAST STATEMENT TERMINATION END STATEMENT TERMINATION
>10 FOR I=l1 TO 4 >10 FOR I=1 TO 4
>20 PRINT I >20 GOSUB 100
>30 NEXT I >30 NEXT I
SRUN | >40 END
>100 PRINT I
1 >110 RETURN
2 >RUN
3
4 1
2
READY 3
> 4
READY
>
Variation:
None.

Statements: FOR - TO - {STEP} - NEXT

Type: CONTROL
FOR - TO - {STEP} - NEXT statements are used to set up and control loops.

Example:

>10 FOR A=B TO C STEP D
>20 PRINT A
>30 NEXT A

If B=0, C=10, and D=2, the PRINT statement at line 20 will be executed six times. The values of ‘‘A’’
that will be printed are 0, 2, 4, 6, 8, 10. ‘“A’’ represents the name of the index or loop counter. The
value of ‘‘B”’ is the starting value of the index, the value of ‘‘C”’ is the limit value of the index, and the
value of ‘‘D”’ is the increment of the index. If the STEP statement and the value ‘‘D’’ are omitted, the
increment value defaults to 1. Therefore, STEP is an optional statement. The NEXT statement causes
the value of ‘‘D’’ to be added to the index. The index is then compared to the value of ‘‘C’’, the limit.
If the index is less than or equal to the limit, control will be transferred back to the statement after the
FOR statement. Stepping ‘‘backwards”’ (i.e. FOR I = 100 TO 1 STEP-1) is permitted in MCS
BASIC-52. Unlike some BASICS, the index may nor be omitted from the NEXT statement in MCS
BASIC-52 (i.e., the NEXT statement must always be followed by the appropriate variable).

NOTE
It is not possible to Exit the loop by use of a GOTO statement from the middle of the loop. K it is

desired to Exit the loop before it’s normal termination, you must set the loop variable equal to its
Exit value inside the loop.

8-8 Statements

_— e e

GFK-0249
Example:

>10 FOR I=1 TO 4 >10 FOR I=0 TO 8 STEP 2
>20 PRINT I >20 PRINT I

>30 NEXT I >30 NEXT I

>ROUN >RUN

1 0

2 2

3 4

4 6

8
READY
> READY
>

Statements: GOSUB [In num] - RETURN
Mode: RUN
Type: CONTROL

GOSUB

The GOSUB [In num] statement will cause MCS BASIC-52 to transfer control of the program directly
to the line number ([In num]) following the GOSUB statement. In addition, the GOSUB statement saves
the location of the statement following GOSUB on the control stack so that a RETURN statement can be
performed to return control.

RETURN

The Return statement is used to ‘‘return’’ control back to the statement following the most recently
executed GOSUB statement. The GOSUB statement can call another subroutine with another GOSUB
statement.

Example:
SIMPLE SUBROUTINE NESTED SUBROUTINES
>10 FOR I=1 TO § >10 FOR I=1 TO 3
>20 GOSUB 100 >20 GOSUB 100
>30 NEXT I >30 NEXT I
>100 PRINT I >40 END
>110 RETURN >100 PRINT I
>ROUN >110 GOSUB 200
>120 RETURN
1 >200 PRINT I*I
2 >210 RETURN
3 >RUN
4
5 11
2 4
READY 39
>
READY
>

Statements 8-9

GFK-0249

Statement: GOTO [In num]
Mode: COMMAND and/or RUN

Type: CONTROL

The GOTO [In num] statement will cause BASIC to transfer control directly to the line number ({In
num)) following the GOTO statement.

Example:

50 GOTO 100

If line 100 exists, the GOTO statement in the example above will cause execution of the program to
resume at line 100. If line number 100 does not exist, the message 'ERROR: INVALID LINE
NUMBER’ will be printed to the console device.

Unlike the RUN command, the GOTO statement, if executed in the Command mode, does not CLEAR
the variable storage space or interrupts. However, if the GOTO statement is executed in the Command-
mode after a line has been edited, MCS BASIC-52 will CLEAR the variable storage space and all
BASIC-evoked interrupts. This is a necessity because the variable storage and the BASIC program
reside in the same RAM memory, and editing a program could destroy variables.

Example:

>10 GOTO 100
>20 PRINT X
>SRUN

ERROR: INVALID LINE NUMBER - IN LINE 20

8-10 Statements

GFK-0249

Statements: ON [expr] GOSUB [In num],[In num], . .. [In num]
ON [expr] GOTO [in num],[ln num], ... [In num]

Mode: RUN

Type: CONTROL

The value of the expression following the ON statement is the number in the line list that control will be
transferred to.

Example:

10 ON Q GOTO 100,200,300

If Q were equal to 0, control would be transferred to line number 100. If Q were equal to 1, control
would be transferred to line number 200. If Q were equal to 2, GOTO line 300, etc. All comments that
apply to GOSUB and GOTO apply to the ON statement. If Q is less than zero, a BAD ARGUMENT
error will be generated. If Q is greater than the line number list following the GOTO or GOSUB
statement, a BAD SYNTAX error will be generated. The ON statement provides ‘‘conditional branch-
ing’’ options within the constructs of an MCS BASIC-52 program.

Statement: IF - THEN - ELSE
Mode: RUN

Type: CONTROL

The IF statement sets up a conditional test. The generalized form of the IF - THEN - ELSE statement is
as follows:

[ln num]IF[rel expr]THEN valid STATEMENT ELSE valid STATEMENT

When writing a statement that has a relational expression [rel expr] with the form IF VARI=VAR2, the
statement will not be compiled correctly if VAR2 is I, P, or F. For example, the statement IF V=I
THEN GOTO 100 will compile as if V= THEN GOTO 100. However, the statement IF V=I1 THEN
GOTO 100 will compile correctly.

Example:

>10 IF A=100 THEN A=0 ELSE A=A+l

Upon execution of line 10 if A is equal to 100, then A would be assigned a value of 0. If A does not
equal 100, A would be assigned a value of A+1. If it is desired to transfer control to different line
numbers using the IF statement, the GOTO statement may be omitted. The following examples would
yield the same results.

Statements 8-11

GFK-0249

Example:

>20 IF INT(A)<10 THEN GOTC 100 ELSE GOTO 200
>20 IF INT(A)<10 THEN 100 ELSE 200

Additionally, the THEN statement can be replaced by any valid MCS BASIC-52 statement.

Example:

>30 IF A<>10 THEN PRINT A ELSE 10
>30 IF A<>10 PRINT A ELSE 10

The ELSE statement may be omitted. If it is, control would then pass to the next statement.

Example:

>20 IF A=10 THEN 40
>30 PRINT &

In this example, IF A equals 10, then control would be passed to line number 40. If A does not equal 10,
line number 30 would be executed.

Statement: INPUT
Mode: RUN

Type: INPUT/OUTPUT

The INPUT statement allows you to enter ASCII coded data from the keyboard (Send Port) during
program execution (refer to Appendix E for a list of ASCI codes). One or more variables may be
assigned data with a single input statement; however, these variables must be separated by a comma.

NOTE

If an application requirement is to be able to read binary data (from O to FFH), you may need to
use the INPB instruction (see Chapter 6 for details).

For example, INPUT A,B would cause the printing of a question mark (?) on the screen as a prompt to
the operator to input two numbers separated by a comma. If the operator does not enter enough data,
MCS BASIC-52 would respond by outputting the message *"TRY AGAIN’ to the screen.

It is sometimes desirable to disable the ‘‘Echo Back’’ during an INPUT statement. For example, when
you press a function key, you do not want to see miscellaneous characters on the screen. Another

8-12 Statements

GFK-0249

example, might be when a password is being entered. It is possible to disable the INPUT echo back by
entering the following:

XBY (OF800H) = OASH
XBY (OF801H) = 05aH

To re-enable the echo back, change the above values to 0.

Example:

>10 INPUT X,B
>20 PRINT A,B
>RUN

The INPUT statement may be written so that a descriptive prompt is printed to tell you what to type.
The message to be printed is placed in quotes after the INPUT statement. If a comma appears before the
first variable on the input list, the question mark prompt character will not be displayed.

Example:

>10 INPUT "ENTER A NUMBRER"A >10 INPUT "ENTER A NUMBER-",A
>20 PRINT SQR (&) >20 PRINT SQR(A)

>RUN >RUN

ENTER A NUMBER ENTER A NUMBER-100

2100 10

10

Strings can also be assigned with an INPUT statement. Strings are always terminated with the Enter key
or Return key. Therefore, if more than one string input is requested with a single INPUT statement,
MCS BASIC-52 will prompt with a question mark.

Example:

>10 STRING 110,10 >10 STRING 110,10

>20 INPUT "NAME: "’$(1) >20 INPUT "NAMES: ",$(1),$(2)
>30 PRINT "HI "’$(1) >30 PRINT "EI "’'$(1),"™ AND "’$(2)
>SRUN SRON

NAME: SUSAN NAMES: BILL

EI SUSAN ? ANN

EI BILL AND ANN
READY
READY

Statements

GFK-0249

8-13

Additionally, strings and variables can be assigned with a single INPUT statement.

Example:

>10 STRING 100,10

>RON

NAME (CR),
2?15

AGE - FRED

READY
>

>20 INPUT "NAME (CR), AGE - ",$(1),A
>30 PRINT "HELLO "’$(l), YOU ARE ",A, "YEARS OLD"

HELLO FRED, YOU ARE 15 YEARS OLD

Statement: LET
Mode: COMMAND and/or RUN

Type: ASSIGNMENT

The LET statement is used to assign a variable to the value of an expression. The generalized form of

LET is:

LET [var] = [expr]

Example:

LET A = 10*SIN(B) /100
IET A=A +1

or

Note that the = sign used in the LET statement is not an equality operator, but rather a ‘‘replacement’’
operator, and that the statement should be read A is replaced by A plus 1. The word LET is always
optional. For example, LET A = 2 is the same as A = 2.

When LET is omitted, the LET statement is called an *‘IMPLIED LET.”’ This document will use the
word LET to refer to both the LET and IMPLIED LET statements.

The LET statement is also used to assign string variables.

STRING” or LET $(2)=$(1).

For example, LET $(1)=""THIS IS A

Before strings can be assigned, the STRING [expr], [expr] statement must be executed, or else a
MEMORY ALLOCATION error will occur. Special function values can also be assigned by the LET

statement. For example:
LET XBYTE (2000H)=5AH
or

LET DBYTE (25)=XBYTE (1000)

8-14 Statements

GFK-0249

Statement: ONERR [In num]
Mode: RUN

Type: CONTROL

The ONERR[In num] statement lets the programmer handle arithmetic errors, should they occur during
program execution. Only ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY ZERO, and
BAD ARGUMENT errors can be ‘‘trapped’’ by the ONERR statement; all other errors cannot. If an
arithmetic error occurs after the ONERR statement is executed, the MCS BASIC-52 interpreter will pass
control to the line following the ONERR[In num] statement. The programmer can handle the error
condition in any manner suitable to the particular application. Typically, the ONERR[In num] statement
should be viewed as an easy way to handle errors when inappropriate data is provided to an INPUT
statement.

With the ONERR[In num] statement, the programmer has the option of determining what type of error
occurred. This is done by examining external memory location 257 (101H) after the error condition is
trapped. The error codes are as follows:

ERROR CODE = 10 - DIVIDE BY ZERO
ERROR CODE = 20 - ARITE. OVERFLOW
ERROR CODE = 30 - ARITH. UNDERFLOW
ERROR CODE = 40 - BAD ARGUMENT

This location may be examined by using an XBY(257) statement.

Statement: ONTIME [expr],[ln num]
Mode: RUN

Type: CONTROL

Since MCS BASIC-52 processes a line in the millisecond time frame and the timer/counters on the
8052AH microcontroller operate in the microsecond time frame, there is an inherent incompatibility
between the timer/counters on the 8052AH and MCS BASIC-52. To help solve this situation, the
ONTIME [expr],[In num] statement was devised.

ONTIME generates an interrupt every time the special function operator, TIME, is equal to or greater
than the expression following the ONTIME statement. Only the integer portion of TIME is compared to
the integer portion of the expression. The interrupt forces a GOSUB to the line number ([In num])
following the expression ([expr]) in the ONTIME statement.

Since the ONTIME statement uses the special function operator, TIME, the CLOCK1 statement must be
executed in order for ONTIME to operate. If CLOCKI1 is not executed, the special function operator,
TIME, will never increment and not much will happen.

In order to generate periodic interrupts, the ONTIME statement must be executed again in the interrupt
routine, as shown in the following example:

Statements 8-15

GFK-0249

Example:

>10 TIME=0 : CLOCKl : ONTIME2,100 : DO

>20 WEILE TIME <10 : END

>100 PRINT "TIMER INTERRUPT AT -", TIME, "SECONDS"
>110 ONTIME TIME+2,100 : RETI

>RUN

2.045 SECONDS
4.045 SECONDS

TIMER INTERRUPT AT
TIMER INTERRUPT AT
TIMER INTERRUPT AT 6.045 SECONDS
TIMER INTERRUPT AT 8.045 SECONDS
TIMER INTERRUPT AT ~10.045 SECONDS

LI I A |

READY

Note that the TIME that was printed out was 45 milliseconds greater than the time that the interrupt was
supposed to be generated. That’s because the terminal used in this example was running at 4800 baud
and it takes about 45 milliseconds to print the message 'TIMER INTERRUPT AT -** °”’.

If you do not want this delay, a variable should be assigned to the special function operator, TIME, at
the beginning of the interrupt routine.

Example:

>10 TIME=0 : CLOCKl : ONTIME 2,100 : DO

>20 WEILE TIME <10 : END

>100 A=TIME

>110 PRINT "TIMER INTERRUPT AT -",A, "SECONDS"
>120 ONTIME A+2,100 : RETI

>RUN

TIMER INTERRUPT AT - 2 SECONDS
TIMER INTERRUPT AT - 4 SECONDS
TIMER INTERRUPT AT - 6 SECONDS
TIMER INTERRUPT AT - 8 SECONDS
TIMER INTERRUPT AT - 10 SECONDS

READY

CAUTION

The ONTIME interrupt routine must be exited with a RETI statement. Failure to do this
will “‘lock out”’ all future interrupts.

The ONTIME statement in MCS BASIC-52 is unique, relative to most BASICS. This powerful
statement eliminates the need for you to ‘‘test’’ the value of the TIME operator periodically throughout
the BASIC program.

8-16 Statements

GFK-0249
Statement: PRINT or P.

Mode: COMMAND and/or RUN

Type: INPUT/OUTPUT

The PRINT statement directs MCS BASIC-52 to output to the console device. The value of expressions,
strings, literal values, variables or test strings may be printed out. The various forms may be combined
in the print list by separating them with commas. If the list is terminated with a comma, the carriage
return/line feed will be suppressed. P is a ‘‘shorthand’’ notation for PRINT; ? is also a ‘‘shorthand”’
notation for PRINT.

Example:

>PRINT 10*10, 3*3 >PRINT "MCS-52" >PRINT 5,1E3
100 S MCS-52 5 1000

Values are printed next to one another with two intervening blanks. A PRINT statement with no
arguments causes a carriage retum/line feed sequence to be sent to the console device.

Special Print Formatting Statements

TAB([expr])

The TAB([expr]) function is used in the PRINT statement to cause data to be printed out in exact
locations on the output device. TAB([expr]) tells MCS BASIC-52 which position to begin printing the
next value in the print list. If the printhead or cursor is on or beyond the specified TAB position, MCS
BASIC-52 will ignore the TAB function.

Example:

>PRINT TAB(S5), "X",TIAB(10),"Y"
X Y

SPC([expr])

The SPC([expr]) function is used in the PRINT statement to cause MCS BASIC-52 to output the number
of spaces in the SPC argument.

Example:

>PRINT &, SPC(5),B

The example above may be used to place an additional 5 spaces between the A and B, over and above
the two that would normally be printed.

Statements 8-17

GFK-0249

CR

The CR function is unique to MCS BASIC-52. When CR is used in a PRINT statement, it will force a
carriage return but no line feed. This can be used to create one line on a CRT device that is repeatedly
updated.

Example:

>10 FOR I=1 TO 1000
>20 PRINT I,CR,
>30 NEXT I

In the example above, the output will remain only on one line. No line feed will ever be sent to the
console device.

USING(special characters)

The USING function is used to tell MCS BASIC-52 what format to display the values that are printed.
MCS BASIC-52 ‘‘stores’’ the desired format after the USING statement is executed. All outputs
following a USING statement will then be in the format evoked by the last USING statement executed.
- The USING statement need not be executed within every PRINT statement unless the programmer
wants to change the format. U. is a ‘‘shorthand’’ notation for USING. The options for USING as as
follows:

USING(Fx): This will force MCS BASIC-52 to output all numbers using the floating point format.
The value of x determines how many significant digits will be printed. If x equals 0,
MCS BASIC-52 will not output any trailing zeros, so the number of digits will vary
depending upon the number. MCS BASIC-52 will always output at least 3 significant
digits, even if x is 1 or 2. The maximum value for x is 8.

Example:

>10 PRINT USING(F3),1,2,3
>20 PRINT USING(F4),1,2,3
>30 PRINT USING(FS),1,2,3
>40 FOR I=10 TO 40 STEP 10
>50 PRINT I

>60 NEXT I

>RUN

1.00E 0 2.00E0 3.00E O
1.000E 0 2.000B 0 3.000E O
1.0000 E 0O 2.0000E O 3.0000E O
1.0000 E41

2.0000 E+1

3.0000 E+1

4.0000 E+1

READY

8-18 Statements

GFK-0249
Statements: PHO., PHI1.

Mode: COMMAND and/or RUN

Type: INPUT/OUTPUT

The PHO. and PHI1. statements do the same thing as the PRINT statement, except that the values are
printed out in a hexadecimal format. The PHO. statement suppresses two leading zeros if the number to
be printed is less than 255 (OFFH). The PHI. statement always prints out four hexadecimal digits. The
character ‘‘H’’ is always printed after the number when PHO. or PH1. is used to direct an output. The
values printed are always truncated integers. If the number to be printed is not within the range of valid
integers (i.e. between 0 and 65535 (OFFFFH), inclusive), MCS BASIC-52 will default to the normal
mode of print. If this happens, no ‘“H’’ will be printed out after the value. Since integers can be entered
in either decimal or hexadecimal form, the statements PRINT, PHO., and PH1. can be used to perform
decimal-to-hexadecimal and hexadecimal-to-decimal conversion. All comments that apply to the
PRINT statement apply to the PHO. and PH1. statements.

Example:
>PEO. 2*2 >PH1. 2*2 >PRINT 9S5E >PEO. 100
04E 0004E 153 64E
>PHO. 1000 >PH1. 1000 >P. 3E8E >PEO. PI
3E8E 03EBE 1000 03B

Statement: PUSH [expr]
Mode: COMMAND and/or RUN

Type: ASSIGNMENT

Arithmetic expressions following the PUSH statement are evaluated and then sequentially placed on
MCS BASIC-52’s argument stack. The PUSH statement, in conjunction with the POP statement,
provides a simple means of passing parameters to assembly language routines. In addition, the PUSH
and POP statements can be used to pass parameters to BASIC subroutines and to ‘“‘SWAP’’ variables.
The last value ‘‘pushed’’ onto the argument stack will be the first value ‘‘popped’’ off the argument
stack.

Variation:

More than one expression can be pushed onto the argument stack with a single PUSH statement. The
expressions are simply followed by a comma, (i.e., PUSH[expr],[expr], [expr]). The last value
pushed onto the argument stack will be the last expression ([expr]) encountered in the PUSH statement.

Statements

GFK-0249

Example:

SWAPPING SUBROUTINE
VARIABLES PASSING

>10 a=10 >10 PUSE 1,3,2
>20 B=20 >20 GOSUB 100

>30 PRINT A,B
>40 PUSE &,B
>50 POP A,B

>60 PRINT XA,B

>30 POP R1l,R2

>40 PRINT R1,R2

>50 END

>100 REM QUADRATIC A=2,B=3,C=l IN EXAMPLE

8-19

>110 POP &A,B,C
>120 PUSE (-B+SQR(B*B-4*A*C))/(2*A)

10 20 >130 PUSE (=B-SQR(B*B-4*A*C))/ (2*A)
20 10 >140 RETURN
>RUN
READY
> -1-5
READY

>

Statement: POP [var]
Mode: COMMAND and/or RUN

Type: ASSIGNMENT

The top of the argument stack is assigned to the variable following the POP statement, and the argument
stack is ‘‘popped’’ (i.e., incremented by 6). Values can be placed on the stack by using either the PUSH
statement or assembly language CALLS. However, if a POP statement is executed and no number is on
the argument stack, an A-STACK error will occur.

Variation:

More than one variable can be popped off the argument stack with a single POP statement. The
variables are simply followed by a comma (i.e., POP[var],[var]........ [var]).

Example:

For an example, refer to the one shown above for the PUSH statement.

Comment:

The PUSH and POP statements are unique to MCS BASIC-52. These powerful statements can be used
to ‘‘get around’’ the global variable problems so often encountered in BASIC programs. This problem
arises in BASIC because the ‘‘main’’ program and all subroutines used by the main program are
required to use the same variable names (i.e., global variables). It is not always convenient to use the
same variables in a subroutine as in the main program, and you often see programs reassign a number of
variables (i.e., A=Q) before a GOSUB statement is executed. If you reserve some variable names just
for subroutines (i.e., S1, S2) and pass variables on the stack, as shown in the previous example, you will
avoid any global variable problems in MCS BASIC-52.

8-20 Statements

GFK-0249

Statement: REM
Mode;: COMMAND AND/OR RUN

Type: CONTROL - (performs no operation)

REM is short for REMark. It does nothing, but allows you to add comments to a program. Comments
are usually needed to make a program easier to understand. A REM statement may not be terminated by
a colon (:) ; however, it may be placed after a colon. This can be used to allow the programmer to place
a comment on each line.

Example:

>10 REM INPUT ONE VARIABLE

>20 INPUT &

>30 REM INPUT ANOTHER VARIABLE
>40 INPUT B

>50 REM MULTIPLY THE TWO

>60 Z=A*B

>70 REM PRINT THE ANSWER

>80 PRINT 2

>10 INPUT A: REM INPUT ONE VARIABLE

>20 INPUT B : REM INPUT ANOTHER VARIABLE
>30 2=A*B : REM MULTIPLY TEE TWO

>40 PRINT Z : REM PRINT THE ANSWER

The following will nor work because the entire line would be interpreted as a REMark, so the PRINT
statement would not be executed.

>10 REM PRINT TEE NUMBER : PRINT A

NOTE

The REM statement is executable in the Command mode of MCS BASIC-52 so that you can use
an UPLOAD/DOWNLOAD routine. This allows you to insert REM statements, without line
numbers in the text, and not download them to the MCS BASIC-52 device; and also helps to
conserve memory.

Statement: RETI
Mode: RUN

Type: CONTROL

The RETI statement is used to exit from interrupts that are handled by an MCS BASIC-52 program
(specifically, ONTIME interrupts). The RETI statement does the same thing as the RETURN statement,
except that it also clears software interrupt flags so interrupts can again be acknowledged. If you fail to
execute the RETI statement in the interrupt procedure, all future interrupts will be ignored.

Statements 8-21

GFK-0249

Statement: STOP
Mode: RUN

Type: CONTROL

The STOP statement allows the programmer to break program execution at specific points in a program
for easy program ‘‘debugging’. After a program is STOPped, variables can be displayed and/or
modified. Program execution may be resumed with a CONTinue command.

Example:

>10 FOR I=1 to 100
>20 PRINT I

>30 STOP

>40 NEXT I

>RUN

1
STOP - IN LINE 40

READY
>CONT

2

NOTE

The line number printed out after the STOP statement is executed is the line number following
the STOP statement, not the line number that contains the STOP statement.

Statement: STRING [expr],[expr]
Mode: COMMAND and/or RUN

Type: CONTROL

The STRING [expr],[expr] statement allocates memory for strings. Initially, no memory is allocated for
strings. If you try to define a string with a statement, such as LET $(1)=*‘HELLO"’, before memory has
been allocated for strings, a MEMORY ALLOCATION error will be generated. The first expression in
the STRING [expr], [expr] statement is the total number of bytes you wish to allocate for string storage.
The second expression denotes the maximum number of bytes in each string. These two numbers
determine the total number of defined string variables.

You might think that the total number of defined strings would be equal to the first expression in the
STRING [expr],[expr] statement divided by the second expression. However, MCS BASIC-52 requires
one additional byte for each string, plus one additional byte overall. This means that the statement
STRING 100.10 would allocate enough memory for 9 string variables, ranging from $(0) to $(8), and all
of the 100 allocated bytes would be used. Note that $(0) is a valid string in MCS BASIC-52.

8-22 Statements

GFK-0249

After memory is allocated for string storage, neither commands, such as NEW, nor statements, such as
CLEAR, will ‘‘deallocate’’ this memory. The only way memory can be deallocated is to execute a
STRING 0,0 statement. STRING 0,0 will allocate no memory to string variables.

NOTE

Every time the STRING [expr],[expr] statement is executed, MCS BASIC-52 executes the
equivalent of a CLEAR statement. This is necessary because string variables and numeric
variables occupy the same external memory space. After the STRING statement is executed, all
variables are ‘‘wiped-out’’. Because of this, string memory allocation should be performed early
in a program. String memory should never be ‘‘reallocated’’ unless the programmer is willing to
destroy all defined variables.

Statement: IDLE
Mode: RUN

Type: CONTROL

The IDLE statement forces the MCS BASIC-52 device into a ‘‘wait until interrupt’’ mode. Execution
of statements is halted until an ONTIME [expr], [In num] interrupt is received. You must make sure that
this interrupt has been enabled before executing the IDLE instruction, or else the MCS BASIC-52
device will enter a ‘‘wait forever’’ mode and the system will crash.

When an ONTIME [expr], [In num] interrupt is received while in the IDLE mode, the MCS BASIC-52
device will execute the interrupt routine and then the statement following the IDLE instruction. Thus,
the execution of the IDLE instruction is terminated when an interrupt is received.

An attempt to execute the IDLE statement in the Direct mode will yield a BAD SYNTAX error.
Statement: RROM (integer)
Mode: COMMAND and/or RUN

Type: CONTROL

RROM stands for RUN ROM. What it does is select a program in the Archival Storage Area and then
execute the program. The integer after the RROM statement selects which program in the Archival
Storage Area is to be executed. In the Command mode, RROM 2 would be equivalent to typing ROM
2, then RUN. But, notice that RROM [integer] is a statement. This means that a program that is already
executing can actually force the execution of a completely different program than is in the Archival
Storage Area. This allows you to ‘‘change programs’’ on the fly.

Statements 8-23

GFK-0249

If you execute a RROM [integer] statement and an invalid integer is entered (i.e., 6 programs are
contained in the Archival Storage Area and you enter RROM 8), no error will be generated and MCS
BASIC-52 will execute the statement following the RROM [integer] statement.

NOTE

Every time the RROM [integer] statement is executed, all variables and strings are set equal to
zero. Variables and strings cannot be passed from one program to another by using the RROM
[integer] statement. Additionally, all MCS BASIC-52 evoked interrupts are cleared. Variables
can be passed to new programs, however, by storing them in the PSA and using the ST@ and
LD@ statements.

8-24 | Statements

GFK-0249

Statements: ST@ [expr] and LD@ [expr]
Mode: COMMAND and/or RUN
Type: INPUT/OUTPUT

ST@

The ST@ [expr] statement allows you to specify where MCS BASIC-52 floating point numbers are to
be stored. The expression ([expr]) following the ST@ statement specifies the address of where the
number is to be stored and the number is assumed to be on the argument stack. The ST@ [expr]
statement is designed to be used in conjunction with the LD@ [expr] statement. The purpose of these
two statements is to allow you to save floating point numbers in the Permanent Storage Area.

LD@

The LD@ [expr] statement allows you to retrieve floating point numbers that were saved with the ST@
[expr] statement. The expression ([expr]) following the LD@ statement specifies where the number is
stored. After executing the LD@ [expr] statement, the number is placed on the argument stack.
Example:

Saving and retrieving a 10-element array at location array at location OFOOOH:

10 REM *** ARRAY SAVE *=*x

20 FOR I=0 TO 9

30 PUSE A(I): REM PUT ARRAY VALUE ON STACK

40 STE OFO05E+6*I: REM STORE IT, SIX BYTES PER NUMBER
50 NEXT I

€0 REM *** GET ARRAY ***

70 FOR I=0 TO S

80 LDE OFO005H+6*I

90 POP B(I)

100 NEXT I

Remember that each floating point number requires 6 bytes of storage. Also, note that expressions in
the ST@ [expr] and LD@ [expr] statements point to the most significant byte of the stored number.
Therefore, ST@ (0F005H) would save the number in locations OF005H, OF004H, OF003H, OF002H,
OF001H, and OFOOOH.

Chapter 9

9-1 Operators and Expressions
GFK-0249

Dual Operand Operators
+ ADDITION OPERATOR

Example:

print 342
s

/ DIVISION OPERATOR

Example:

PRINT 100/5
20

**EXPONENTIATION OPERATOR

Raises the first expression to the power of the second expression. The power any number can be raised
to is limited to 255. To eliminate confusion, the notation ** was chosen instead of the Up arrow
symbol, because the Up arrow is displayed differently on various terminals.

Example:

PRINT 2%*3

* MULTIPLICATION OPERATOR

Example:

PRINT 3*3
S

9.2 Operators and Expressions

e e —

GFK-0249
- SUBTRACTION OPERATOR

Example:

PRINT S-6

AND. LOGICAL AND OPERATOR

Example:

PRINT 3.AND.2

.OR. LOGICAL OR OPERATOR

Example:

PRINT 1.0R.4
s

XOR. LOGICAL EXCLUSIVE OR OPERATOR

Example:

PRINT 7.XOR.6€
1

Comments on Logical Operators .AND., .OR., and .XOR.

These operators perform a bit-wise logical function on valid integers. That means both arguments for
these operators must be between 0 and 65535 (OFFFH), inclusive. If they are not, MCS BASIC-52 will
generate a BAD ARGUMENT error. All non-integer values are truncated, i.e., NOT rounded.

MCS BASIC-52 eliminates all spaces when it processes a user line, and inserts spaces before and after
statements when it lists a user program. MCS BASIC-52 does not insert spaces before and after
operators. So, if you type in a line such as 10 A = 10 * 10, the line will be listed as 10 A = 10*10. All
spaces entered before and after the operator will be eliminated.

The .OP. notation was chosen for the logical operators because a line entered as 10 B = A AND B would
be listed as 10 B=AANDB. This looked confusing, so dots were added to the logical instructions. The
previous example would be listed as 10 B=A.AND.B, which is easier to read.

Operators and Expressions

9-3

GFK-0249

Single Operand Operators - General Purpose

ABS([expr])

Returns the absolute value of the expression.

Example:

PRINT ABS(S)
5

PRINT ABS (-5)
5

NOT([expr])

Returns a 16 bit one’s complement of the expression. The expression must be a valid integer between 0

and 65535 (OFFFFH), inclusive. Non-integers will be truncated, not rounded.

Example:

PRINT NOT (65000)
535

PRINT NOT(O)
65535

INT([expr])

Retwns the integer portion of the expression.

Example:

PRINT INT(3. 7)
3

PRINT INT(100, 876)
100

SGN([expr])

Returns a value of +1 if the argument is greater than zero, zero if the argument is equal to zero, and -1 if

the argument is less than zero.

Example:

PRINT SGN(52)
1

PRINT SGN(0) PRINT SGN(-8)
0 -1

9.4 Operators and Expressions

GFK-0249
SQR([expr])

Returns the square root of the argument. The argument may not be less than zero. The result returned
will be accurate within a value of 5 on the least significant digit.

Example:

PRINT SQR(9) PRINT SQR(45) PRINT SQR(100)
3 €.7082035 10

RND

Returns a pseudo-random number in the range between 0 and 1, inclusive. The RND operator uses a
16-bit binary seed and generates 65536 pseudo-random numbers before repeating the sequence. Unlike
most BASICS, the RND operator in MCS BASIC-52 does not require an argument or a dummy
argument. In fact, if an argument is placed after RND operator, a BAD SYNTAX error will occur.

Example:

PRINT RND
30278477

PI

Pl is not really an operator; it is a stored constant. In MCS BASIC-52, PI is stored as 3.1415926. Math
experts will notice that PI is actually closer to 3.141592653, so proper rounding for PI should yield the
number 3.1415927. The reason MCS BASIC-52 uses a 6 instead of a 7 for the last digit is that errors in
the SIN, COS and TAN operators were found to be greater when the 7 was used instead of 6. This is
because the number PI/2 is needed for these calculations and it is desirable, for the sake of accuracy, to
have the equation P1/2 + P1/2 = PI hold true. This cannot be done if the last digit in PI is an odd number,
so the last digit of PI was rounded to 6 instead of 7 to make these calculations more accurate.

Single Operand Operators - Log Functions

LOG([expr])

Returns the natural logarithm of the argument. The argument must be greater than 0. This calculation is
carried out to 7 significant digits.

Example:

PRINT LOG (12) PRINT LOG (EXP (1))
2.484906 1

Operators and Expressions 9.5

e — — — — _ — —————________ _______ ______

GFK-0249
EXP([expr])
This function raises the number ‘‘e’’ (2.7182818) to the power of the argument.

Example:

PRINT EXP (1) PRINT EXP (LOG(2))
2.7182818 2

Single Operand Operators - Trig Functions

SIN([expr])

Returns the SIN of the argument. The argument is expresses in radians. Calculations are carried out to
7 significant digits. The argument must be between +£1200000.

Example:

PRINT SIN(PI/4) PRINT SIN(O)
.7071067 0

COS([expr])

Returns the COS of the argument. The argument is expressed in radians. Calculations are carried out to
7 significant digits. The argument must be between +200000.

Example:

PRINT COS (PI/4) PRINT COS(0)
.7071067 1

TAN([expr])

Returns the TAN of the argument. The argument is expressed in radians. The argument must be
between +1200000.

Example:

PRINT TAN(PI/4) PRINT TAN(0)
1 0

9.6 Operators and Expressions

GFK-0249
ATN([expr])
Returns the ARCTANGENT of the argument. The result is in radians. Calculations are carried out to 7
significant digits. The ATN operator returns a result between -PI/2 (3.1415926/2) and P1/2.

Example:

PRINT ATN (PI) PRINT ATN(1)
1.2626272 .78539804

Precedence of Operators

The hierarchy of mathematics dictates that some operations are carried out before others. If you
understand this hierarchy, it is possible to write complex expressions using only a minimum amount of
parentheses. It is easy to illustrate what precedence is all about by examining the following equation:

4+43*%2= ?

Should you add (4+3), and then multiply 7 by 2, or should you multiply (3*2), and then add 4? The
hierarchy of mathematics says that multiplication has precedence over addition, so you would multiply
(3*2) first, and then add 4. So,

4+3*2=10

The rules for hierarchy of math are simple. When an expression is scanned from left to right, an
operation is not performed untl an operator of lower or equal precedence is encountered. In the
previous example, addition could not be performed because multiplication has higher precedence. The
precedence of operators from highest to lowest in MCS BASIC-52 is as follows:

Operators that use parentheses ()
Exponentiation (**)

Negation (-)

Multiplication (*) and Division (/)

Addition (+) and Subtraction (-)

Relational Expressions (=, <, >, >=, <, <=)
Logical AND (.AND.)

Logical OR (.OR.)

Logical XOR (.XOR.)

R B

NOTE

When in doubt over which operator takes precedence, use parentheses.

How Relational Expressions Work

Relational expressions involve the operators =, >, >=, <, <=, and <. These operators are typically used
to ‘““test’’ a condition. In MCS BASIC-52, relational operators return a result of 65535 (OFFFFH) if the
relational expression is true, and a result of 0 if the relation expression is false. The result is returned to

Operators and Expressions . 9.7

GFK-0249

the argument stack. Because of this, it is possible to actually display the result of a relational
expression.

Example:

PRINT 1=0 PRINT 1>0 PRINT A<OA PRINT A=A
0 €5535 0 €5535

Having a relational expression return a result offers a unique benefit in that relational expressions can
actually be ‘‘chained’’ together using the logical operators .AND., .OR., and .XOR.. This makes it
possible to test a rather complex condition with one statement.

Example:

>10 IF A<B.AND.A>C.OR.A>D THEN.........

Additionally, the NOT([expr]) operator can be used.

Example:

>10 IF NOT (A>B) .AND.A<C TEEN..........

By “‘chaining’’ together relational expressions with logical operators, it is possible to test very particular
conditions with one statement. When using logical operators to link together relational expressions, it is
important that the programmer pays careful attention to the precedence of operators. The logical
operators were assigned lower precedence, relative to relational expressions, just to make the linking of
relational expressions possible without using parentheses.

Chapter 1 O

10-1 String Operators

|

GFK-0249

ASC()
The ASC() operator returns the integer value of the ASCII character placed in parentheses.

Example:

>PRINT ASC(A)
€5

65 is the decimal representation for the ASCI character ‘‘A.”’ In addition, individual characters in a
predefined ASCII string can be evaluated with the ASC() operator.

Example:

>10 $(1)="TEIS IS A STRING"
>20 PRINT § (1)

>30 PRINT ASC($(1),1)

>RON

THIS IS A STRING
84

When the ASC() operator is used as shown above, the $(expr) denotes what string is being accessed.
The expression after the comma identifies an individual character in the string. In the above example,
the first character in the string was picked out and 84 is the decimal representation for the ASCI
character ““T.”

Example:

>10 $(1)="ABCDEFGHIJKL"
>20 FOR X=1 TO 12

>30 PRINT ASC($(1),X),
>40 NEXT X

>RUN

65 €66 67 68 €95 70 71 72 T3 4 15 76

The numbers printed in the previous example are the values that represent the ASCII characters A, B, C,
. L.

Additionally, the ASC() operator can be used to change individual characters in a defined string.

10-2 String Operators

_———
GFK-0249

Example: '

>10 $(1)="ABCDEFGEIJKL"
>20 PRINT $(1)

>30 ASC($(1),1)=75

>40 PRINT $(1)

>50 ASC($(1),2)=ASC($(2),3)
>60 PRINT §$(1)

SRUN

ABCDEFGEIJKL
KBCDEFGEIJKL
KCCDEFGEIJKL

In general, the ASC() operator lets the programmer manipulate individual characters in a string. A
simple program can determine if two strings are identical.

NOTE

The GE Fanuc - NA custom command MATCH can also be used to determine if strings are identical.

Example:

>10 $(1)="SECRET" : REM SECRET IS THE PASSWORD
>20 INPUT "WEAT’S THE PASSWORD - ", $(2)

>30 FOR I=1 TO 6

>40 IF AsSC8§(1),I)=ASC($(2),I) THEN NEXT I ELSE 70
>50 PRINT "YOU GUESSED IT!"

>60 END

>70 PRINT "WRONG, TRY AGAIN" : GOTO 20

>RUN

WEAT’S THE PASSWORD - SECURE
WRONG, TRY AGAIN

WHAT'S TEE PASSWORD -~ SECRET
YOU GUESSED IT

CHR()

The CHR() operator is the converse of the ASC() operator. It converts a numeric expression to an
ASCII character.

Example:

>PRINT CHR(65)
A

Like the ASC() operator, the CHR() operator can also identify individual characters in a defined ASCII
string.

String Operators 10-3

GFK-0249

Example:

>10 §(1)="MCS BASIC-52"

>20 FOR I"1 TO 12 : PRINT CER($(1),I), : NEXT I
>30 PRINT : FOR I=12 TO 1 STEP -1

>40 PRINT CHR($(1),I), : NEXT I

>RUN

MCS BASIC-52
25-CISAB SCM

In the above example, the expressions contained within the parentheses, following the CHR operator
have the same meaning as the expressions in the ASC() operator.

Unlike the ASC() operator, the CHR() operator cannot be assigned a value. A statement such as
CHR(8(1),1) = H, is INVALID and will generate a BAD SYNTAX error. Use the ASC() operator to
change a value in a string. The CHR() operator can only be used within a PRINT statement.

Chapter 1 1

11-1 Special Function Operators
GFK-0249

CBY([expr])

The CBY([expr]) operator is used to retrieve data from the PROGRAM or CODE MEMORY address
space of the 8052AH microcontroller. Since CODE memory cannot be written into on the 8052AH, the
CBY([expr]) operator cannot be assigned a value. It can only be read.

Example:

A = CBY(1000) causes the value in code memory space 1000 to be assigned to variable A. The
argument for the CBY ([expr]) operator must be a valid integer (i.e., between 0 and 65535 (OFFFFH)).
If it is not, a BAD ARGUMENT error will occur.

DBY([expr])

The DBY([expr]) operator is used to retrieve or assign a value to the 8052AH’s internal data memory.
Both the value and argument in the DBY operator must be between 0 and 255, inclusive. This is
because there are only 256 internal memory locations in the 8052AH microcontroller, and one byte can
only represent a quantity between 0 and 255, inclusive.

Example:

A=DBY (B) and DBY(250) = CBY(1000)

The first example would assign variable A the value that is in internal memory location B. B would
have to be between 0 and 255. The second example would load internal memory location 250 with the
same value that is in program memory location 1000.

XBY([expr])

The XBY ([expr]) operator is used to retrieve or assign a value to the 8052AH’s external data memory.
The argument in the XBY([expr]) operator must be a valid integer between 0 and 65535 (OFFFFH). The
value assigned to the XBY ([expr]) operator must be between 0 and 255. If it is not, a BAD
ARGUMENT error will occur.

Example:

XBY (4000E) =DBY (100) and A=XBY (OFO000EH)

GET

The GET operator only produces a meaningful result when used in Run mode. It will always retumn a
result of zero in the Command mode. GET reads the console input device by taking a ‘‘snapshot’’ of it.

11-2 Special Function Operators

GFK-0249

If a character is available from the console device, the value of the character will be assigned to GET.
After GET is read in the program, GET will be assigned the value of zero until another character is sent
from the console device. The following example will print the decimal representation of any character
sent from the console.

Example:

>10 A=GET
>20 IF A<>0 TEEN PRINT A
>30 GOTO 10

>RUN

€5 (TYPE "A" ON CONSOLE)

49 (TYPE "1" ON CONSOLE)

24 (TYPE "CONTROL-X" ON CONSOLE)
50 (TYPE "2" ON CONSOLE)

The GET operator can be read only once before it is assigned a value of zero in order to guarantee that
the first character entered will always be read, independent of where the GET operator is placed in the
program.

TIME

The TIME operator is used to retrieve and/or assign a value to the real-time clock resident in MCS
BASIC-52. After reset, TIME is equal to 0. The CLOCK1 statement enables the real-time clock. When
the real-time clock is enabled, the special function operator, TIME, will increment once every 5
milliseconds. The unit of TIME is seconds, and the appropriate XTAL value must be assigned to ensure
that the TIME operator is accurate.

When TIME is assigned a value with a LET statement (i.e. TIME=100), only the integer portion of
TIME will be changed.

To assign the fractional portion of time, use

DBY(71)=0: REM SET FRACTIONAL TIME TO O

NOTE
TIME will not update in Command mode. It will only update in the RUN mode.

Special Function Operators

GFK-0249
Example:

>CLOCK1 (enable REAL TIME CLOCK)
>CLOCKO (disable REAL TIME CLOCK)
>PRINT TIME (display TIME)

3.331%
STIME=D (set TIME=D)
>PRINT TIME (display TIME)

.315 (only the integer is changed)

The "fraction™ portion of TIME can be changed by manipulating
the contents of internal memory location 71 (47H). This is
accomplished by a DBY(71) statement. Note that eack count in

internal memory location 71 (47H) represents 5 milliseconds of TIME.

Continuing with the example ...
>DBY (71)=0 (fraction of TIME=0)

>PRINT TIME
0

SDBY(71)=3 (fraction of TIME=3, 15 ms)

>PRINT TIME
1.5 -2

XTAL

11-3

The XTAL operator tells MCS BASIC-52 at what frequency the systemn is operating. The XTAL
operator is used by MCS BASIC-52 to calculate the real-time clock reload value, the PROM program-
ming timing, and the software serial port baud rate generation. The XTAL value is expressed in Hz.

Example:

XTAL = 9000000
would set the XTAL value to 9 mHz.

System Control Values

MTOP

After reset, MCS BASIC-52 sizes the external memory and assigns the last valid memory address to the
system control value, MTOP. MCS BASIC-52 will not use any external RAM memory beyond the
value assigned to MTOP. If you wish to allocate some external memory for an assembly language
routine the LET statement can be used (e.g. MTOP = USER ADDRESS). If you assign a value to
MTQOP that is greater than the last valid memory address, a MEMORY ALLOCATION error will be

generated.

11-4 Special Function Operators
e ——

GFK-0249
Example:
>PRINT MTOP
2047
>MTOP=2000
>PRINT MTOP
2000
LEN

The system control value, LEN, tells you how many bytes of memory the current selected program
occupies. Obviously, LEN cannot be assigned a value, it can only be read. A NULL program (i.e., no
program) will return a LEN of 1. The 1 represents the end of program file character.

FREE

The system control value, FREE, tells how many bytes of RAM memory are available to the user.
When the current selected is in RAM memory, the following relationship will always hold true.

FREE = MTOP - LEN - 511
NOTE

Unlike some BASICS, MCS BASIC-52 does not require any ‘‘dummy’’ arguments for the
system control values.

Chapter 1 2

12-1 Error Messages

GFK-0249

MCS BASIC-52 has a relatively sophisticated error processor. When BASIC is in Run mode, the
generalized from of the error message is as follows:

ERROR: XX - IN LINE YYY
YYY BASIC STATEMENT

where XXX is the error type and YYY is the line number of the program in which the error occurred. A
specific example is:

ERROR: BAD SYNTAX - IN LINE 10
10 PRINT 34*21*

The X signifies approximately where the error occurred in the line number. The specific location of the
X may be off by one or two characters or expressions, depending on the type of error and where the
error occurred in the program. If an error occurs in Command mode, only the error type will be printed

out, not the line number. (There are no line numbers in Command mode.) The error types are described
below:

BAD SYNTAX

A BAD SYNTAX error means that either an invalid MCS BASIC-52 command, statement, or operator
was entered and BASIC cannot process the entry. You should check to make sure that everything was
typed in correctly. A BAD SYNTAX error is also generated if the programmer attempts to use a
reserved keyword as part of a variable.

BAD ARGUMENT

When the argument of an operator is not within the limits of the operator, a BAD ARGUMENT error
will be generated. For example, DBY(257) would generate a BAD ARGUMENT error because the
argument for the DBY operator is limited to the range 0 to 255. Similarly, XBY(5000H)=-1 would
generate a BAD ARGUMENT error because the value of the XBY operator is limited to the range 0 to
258S.

ARITH. UNDERFLOW

If the result of an arithmetic operation exceeds the lower limit of an MCS BASIC-52 floating point
number, an ARITH. UNDERFLOW error will occur. The smallest floating point number in MCS
BASIC-52 is +1E-127. For example, 1E-80/1E+80 would cause an ARITH. UNDERFLOW error.

12-2 Error Messages

GFK-0249
ARITH. OVERFLOW

If the result of an arithmetic operation exceeds the upper limit of an MCS BASIC-52 floating point
number, an ARITH. OVERFLOW error will occur. The largest floating point number in MCS
BASIC-52 is 1.99999999E+127. For example, 1E+70*1E+70 would cause an ARITH. OVERFLOW
erTor.

DIVIDE BY ZERO
If a division by zero is attempted (i.e., 12/0), it will produce a DIVIDE BY ZERO error.

NO DATA

If a READ statement is executed and no DATA statement exists, or all DATA has been read and a
RESTORE instruction was not executed, the message ’JERROR: NO DATA - IN LINE XXX’ will be
printed to the console device.

CAN’T CONTINUE

Program execution can be either by typing Ctrl C on the keyboard or by executing a STOP statement.
Normally, program execution can be resumed by typing in the CONT command. However, if you edit
the program after halting execution and then enter the CONT command, a CAN’T CONTINUE error
will be generated. A Cul C must be typed during program execution or a STOP statement must be
executed before the CONT command will work.

PROGRAMMING

If an error occurs while the MCS BASIC-52 device is programming, a PROGRAMMING error will be
generated. An error encountered during programming destroys the archival storage area structure, so

you cannot save any more programs on that particular archival storage area once 2 PROGRAMMING
€ITOr OCCurs.

A-STACK

An A-STACK (ARGUMENT STACK) error occurs when the argument stack pointer is forced ‘‘out of
bounds’’. 158 bytes of external memory are allocated for the control stack, FOR-NEXT loops require
17 bytes of control stack DO-UNTIL, DO-WHILE, and GOSUB require 3 bytes of control stack. This
means that 9 nested FOR-NEXT loops is the maximum that MCS BASIC-52 can handle because 9 times
17 equals 153.

If you attempt to use more control stack than is available in MCS BASIC-52, a C-STACK error will be
generated. In addition, C-STACK errors will occur if a RETURN is executed before a GOSUB, a
‘WHILE or UNTIL before a DO, or a NEXT before a FOR.

I-STACK

An I-STACK (INTERNAL STACK) error occurs when MCS BASIC-52 does not have enough stack
space to evaluate an expression. Normally, I-STACK errors will not occur unless insufficient memory
has been allocated to the 8052AH’s stack pointer.

Error Messages 12-3

GFK-0249

ARRAY SIZE

If an array is dimensioned by a DIM statement and you attempt to access a variable outside of the
dimensioned bounds, an ARRAY SIZE error will be generated.

Example:

>DIM A(10)

>PRINT A(11)

ERROR: ARRAY SIZE

READY
MEMORY ALLOCATION

MEMORY ALLOCATION errors are generated when you attempt to access strings that are ‘‘outside’’
the defined string limits. Additionally, if the system control value, MTOP, is assigned a value that does
not contain any RAM memory, a MEMORY ALLOCATION error will occur.

Chapter 1 3

13-1 Application Examples

GFK-0249

Example 1 - Transferring Data Between the ASCII/BASIC Module and
the Series One/One Plus CPU

Data sent from the ASCII/BASIC Module to the Series One or One Plus CPU is scanned and set the
same as any other I/O points by the CPU. However, the ASCII/BASIC Module has a specific command
for reading and writing data to the CPU. This command is the TRANSFER command.

Using the Transfer Command

The TRANSFER command reads or writes data at the beginning of a CPU scan. It returns a status flag
that confirms that data has been transferred to or from the CPU. Any other method of communication
between the module and the CPU cannot guarantee that the CPU has had enough time to write or read
correct data on the 1/O lines.

The TRANSFER command has four parameters which are listed below.

Table 13-1. TRANSFER Command Parameters

Parameter Description

RorW Read Data - CPU to ASCII/BASIC Module
Write Data - ASCII/BASIC Module to CPU

FORMAT | Specifies format of data to be transferred. Floating Point data in the ASCII/BASIC Module can be
converted to BCD when transferring to the CPU. BCD data in the CPU can be converted to
floating point data when transferring to the ASCII/BASIC Module. The data value to be converted
must not exceed 99 in either the CPU or the ASCII/BASIC Module.

If FORMAT=2, conversion takes place.

If FORMAT=4, no conversion is done.

ABMLOC | The variable name of the scalar or array number where data is to be read from or written to. This
variable must be defined before being used in the TRANSFER instruction.

FLAG A scalar or array variable name which indicates the status of the TRANSFER command. There are
four possible values that can be returned from the TRANSFER command.

Flag = -1, transfer not complete

Flag = 0, transfer completed successfully

Flag = 2, ABMLOC not yet defined

Flag = 3, range error in data to be transferred

Flag = none of the above - Error condition

Example of TRANSFER Command

An example of a TRANSFER command is shown below, with the supporting code needed for the
parameters. The example sends a value of 55 from the ASCI/BASIC Module to the CPU with the

13-2 Application Examples

GFK-0249

ASCII/BASIC Module converting the value to BCD for use by the CPU. The program waits until it is
completed before continuing, or stops if an error is detected.

10 FLAG=0

20 CODE=55

30 TRANSFER W, 4,CODE, FLAG

40 IF FLAG=0 THEN GOTO 60

50 IF FLAG>0 THEN PRINT FLAG : STOP ELSE GOTO 40
60 REM program continues

Transferring Register Data

A convenient use for the ASCI/BASIC Module is to get register data from the CPU. Most register data
is 16 bits, which requires at least two TRANSFER commands to be issued. Since there is no specific
program to get register information, a program must be developed which ensures that the ASCII/BASIC
Module gets the right information. BASIC code must be written in connection with relay ladder logic
that will synchronize the two processors. In the BASIC program shown below, one of two codes is
transferred from the ASCII/BASIC Module to indicate to the CPU which eight bits of the sixteen bit
register to output for the module to read.

The data to be sent is determined by the relay ladder logic. The first step is to define all of the variables.
The first code sent by the ASCI/BASIC Module is 0F4 (hexadecimal). The number must not be
converted by the ASCII/BASIC Module since it is greater than 99. This code signals the CPU to put the
least significant byte of the sixteen bit register out for the ASCII/BASIC Module to read after sending an
acknowledge flag back verifying that it saw the request. After the data is received, a second flag is put
up asking for the most significant byte in the same manner. The result is then printed to a terminal.

Code for Register Data Transfer

10 L1LSB=0 : FLAG=0

20 CODE=QF4E

30 TRANSFER W, 2,CODE, FLAG

40 IF FLAG=0 THEN GOTO 60

50 IF FLAG.0 THEN PRINT FLAG ; STOP ELSE GOTO 40
€0 TRANSFER R, 4,LSB,FLAG

70 IF FLAG =0 THEN GOTO 90

80 IF FLAG>0 TEEN PRINT FLAG ; STOP ELSE GOTO 70
90 CODE=OFSE
100 TRANSFER W, 2, CODE, FLAG
110 IF FLAG=0 THEN GOTO 130
120 IF FLAG>0 THEN PRINT FLAG : STOP ELSE GOTO 110
130 TRANSFER R, 4,MSB, FLAG

140 IF FLAG=0 THEN GOTO 160

150 IF FLAG>0 THEN PRINT FLAG : STOP ELSE GOTO 140
160 COUNTER=((MSB*100)+LSB)/10

170 PRINT COUNTER

180 END

Application Examples

13-3

GFK-0249

Relay Ladder Logic for Register Data Transfer

Relay ladder logic for this BASIC program is shown below. If you were printing the transferred data to
an OIT screen at 19.2K Baud, the update time would be approximately 0.1 seconds (100 ms).

02/14/889 12:06:26 GE FANUC LOGICMASTER 1lF documentation Page 1

* % % F % o % % % % o ok % A ¥

+1

*
*
*®
*
*

TRANSFER TO/FROM ABM
SERIES ONE PLUS CPU

<< RUNG 0 >>

KKK KKK KK KK R KRR KK R R KRR AR R KRR AR R R AR R KRR R AR R R R R R AR AR AR R KRR AR A RAR AR AAKRRRARKKR R

This relay ladder diagram will transfer the value of Timer 600 to
the ASCII/BASIC Module located in slot 1 next to the Series One
Plus CPU. The ASCII/BASIC Module requests the data with a series
of flags to the CPU. The least significant byte is transferred
first, then the most significant byte.

For comment purposes, the following assignments have been made.

Registers 500 and 501 = WORK_REG
Inputs 0-7 (RO) = ABM TO_CPU
Outputs 100-107 (R10) = CPU_TO_ABM
Internal Coils 160-165 = FLAGS
Timer 600 = TIMER 1

* % F o % o o o % % % % X % %

KR KKK KK KR AR KRR AR KA AR KRR R AR AR A AR AR R AR R AR R AR AR AR AR KRR AR KRR A RRR AKX R XA R KKK

Start of Program]-

<< RUNG 1 >>

T N R L T L R R R T T 2 T 2 2
*

. *

if ABM TO CPU = 0x0F4 *

*

LI 2223222222222 3 22222222222 RS2t 2 222322222222 E 22

160 R 000
+==1/1 +[D STR1 FUN 51)
+ +[BINBCD FUN 86]
| K 0244
+ +[CMPR FUN 70]

<< RUNG 2 >>

160 773 160

4"--] /1 11 (SET)

13-4 Application Examples

GFK-0249

02/14/89 12:06:32 GE FANUC LOGICMASTER 1f documentation Page 2
TRANSFER TO/FROM ABM
SERIES ONE PLUS CPU

<< RUNG 3 >>

K AR AR T AR R K KA A AR K R A K KK A A A A AR A AR A R KR KA KR A AR KRR KR AR AR AR AKX AR TR KRR R ARRAKRRR KRR KK

* *
* *
* WORK_REG = TIMER 1; *
* *

*******t************R****'k*t*******************t**************************?.*t*

160 161 R 600
+==] [=)/ === e e +[D STRO FUN 50)
R 500
+ +[D OUTO FUN 60]
161
+ 4e=emeceee= (SET)
<< RUNG 4 >>

A AR KRR KA R AR AR K KKK AR KRR AR R AR R R KRR A AR R R KRR AR A A AR R AR R AR AR KRR RRKR KRR AR RRRR R KKK

* *
* *
* CPU_TO_ABM = WORK_RBG (LSB) ; *
* *

L3222 2222222 2222222222222 2222222222222 sttt R R LR 2

161 165 R 500
+==] [1/1 +[D STR1 FUN 51]
R 010
+ +[D OUT1 FUN 61)

l 165
+ tomm—— e (SET)

Application Examples

GFK-0249
02/14/89 12:06:36 GE FANUC LOGICMASTER 1f documentation Page 3
TRANSFER TO/FROM ABM
SERIES ONE PLUS CPU
<< RUNG 5 >>

[R T I IE 2222222222222 22322222 22223t 2 232X 22322 2222 X2 22222 X 22 2 R a8 2 2 8 8 2 83
* *
* *
* if ABM TO CPU = OxOF5 *
*® *

(X222 3222222222222 a2t R s s i s s st it sttt st RS

161 R 000
e I - -+[D STR1 FUN 51]
+ +[BINBCD FUN 86]
K 0245
+ +[CMPR FUN 70]
<< RUNG e >>
161 773 162 162
+=-=] [10 -1/1- (SET)
<< RUNG 7 >>
P T2 XTI E I IEEI LI T IZIIII SRS EII SRS IS SIS S22 2222222 22 222 2 2 £ & &3
* *
* *
* CPU_TO_ABM = WORK_REG (MSB) ; ' *
* *
[E XX IXITTIIILE I EITIEI RIS IS IS RS SIS IE S SRS SIS SIS SIS 222222 222222222222 2 2 & & &4
162 R 501
+==] -—- +[D STR1 FUN 51)
R 010

+ +[D OUT1 FUN 61]

13-6

Application Examples

02/14/89 12:07:44
<< RUNG 8 >>
*
*
*
* RESET_FLAGS;
*

GE FANUC LOGICMASTER 1lf documentation
TRANSFER TO/FROM ABM
SERIES ONE PLUS CPU

GFK-0249

Page 4

<< RUNG 10 >>

+[ENDSW} -

162 160

$==] [==- + - (RST)

161

+ G- (RST)

162

+ o —— (RST)

165

+ e ——— (RST)
<< RUNG 9 >>

164 T 600 K 9999 T 600

+==1/1 1/1 [PRESC] -~ (TMR)

KT AR R R R R R R KR KR R R KRR R AR AR R R R R A A KR A A AR R A KA R R R AR A A AR AR R A AR AR AR A AR AR KKKk

*
*
*
*

R AR R K KRR R R R R AR R R R KA R AR R R AR R A AR A AR R R R A R R A AR R AR A AR AR AR KRR KRR RARAR KRR AR

Application Examples 13.7

GFK-0249

Example 2 - Sending Commands to an OIT

To send commands from the ASCII/BASIC Module to an Operator Interface Terminal (OIT), you must

send escape sequences. For example, to send a command to print file number 9 requires the following
line of code:

10 PRINT CHR(27), "[9%",

The comma at the end of the sequence causes the cursor to remain where it was located after the file

was printed. A command to place the cursor at a specific location on an OIT screen would require the
following line:

10 PRINT CHR(27) "[11;49E",

That command will cause the cursor to be located in row 11, column 49. To print a value in a certain

format, such as a timer in .1 second increments, requires first printing a format, then the data, as shown
below.

10 PRINT USING (#4¢.¢)
20 PRINT TMR (1)
30 PRINT USING(O)

Refer to the description of the USING command for details on setting up different formats. The PRINT
USING(0) command is a reset to default conditions.

When powering-up an ASCII/BASIC Module, it may be useful to wait a specific period of time before
starting execution of a particular program, since erroneous characters may be received while the
connecting device is also powering-up. This delay can be achieved by using the CLOCK command as
shown in the following example.

20 CLOCK 1
30 IF (TIME>10) THEN GOTO 50
40 GOTO 30
$0 CLOCK ©

In line 20, the internal clock is started, and in line 30 it is checked for a duration of ten seconds.
When ten seconds has passed, the clock is stopped. At this point, the program will begin execution.

A-1

GFK-0249

Appendix A

Commands, Statements, and Operators: Reference Tables

Table A-1. Commands

Generate an interrupt when TIME is equal to or greater than
ONTIME argument-line number is afier comma

COMMAND FUNCTION EXAMPLE(S)

RUN Execute a program RUN
CONT CONTinue after a STOP or Cirl C CONT
LIST LIST program to the console device LIST

LIST 10-50
NEW Erase the program stored in RAM NEW
NULL Set NULL count after carriage return-line feed NULL

NULL 4
RAM Evoke RAM mode, current program in RAM memory RAM
ROM Evoke ROM mode, current program in Archival Storage Area ROM

ROM 3
XFER Transfer a program from archival storage area to RAM XFER
BURN Save the current program in archival storage area BURN

Table A-2. Statements
STATEMENT FUNCTION EXAMPLE(S)

CLEAR CLEAR variables, interrupts, and strings CLEAR
CLEARI CLEAR interrupts CLEARI
CLEARS CLEAR stacks CLEARS
CLOCK1 Enable real time clock CLOCK1
CLOCKO Disable real time clock CLOCKO
DATA DATA to be read by READ statement DATA 100
READ READ data in DATA statement READ A
RESTORE RESTORE READ pointer RESTORE
DIM Allocate memory for arrayed variables DIM A(20)
DO Set up loop for WHILE or UNTIL DO
UNTIL Test DO loop condition (loop if false) UNTIL A=10
WHILE Test DO loop condition (loop if ture) WHILE A=
END Terminate program execution END
FOR-TO-{STEP} | Set up FOR-NEXT loop FOR A=1TO §
NEXT Test FOR-NEXT loop condition NEXT A
GOSUB Execute subroutine GOSUB 1000
RETURN RETURN from subroutine RETURN
GOTO GOTO program line number GOTO 500
ON GOSUB Conditional GOSUB ON A GOSUB 2, 6
ON GOTO Conditional GOTO ON A GOTO 5, 20
IF-THEN-ELSE Conditional test IF A<B THEN A=0
INPUT INPUT a string or variable INPUT A
LET Assign a variable or string a value (LET is optional) LET A=10
ONERR ONERR or GOTO line number ONERR 1000
ONTIME

ONTIME 10, 1000

Commands, Statements, and Operators: Reference Tables

GFK-0249
Table A-2. Statements - Continued

STATEMENT FUNCTION EXAMPLE(S)
PRINT PRINT variables, strings or literals. P. is shorthand for PRINT PRINT A
PHO. PRINT HEX mode with zero suppression PHO.A
PHI. PRINT HEX mode with no zero suppression PH1.A
PUSH PUSH expressions on argument stack PUSH 10, A
POP POP argument stack to variables POP A.B,C
REM REMark REM DONE
RETI RETurn from Interrupt RETI
STOP Break program execution STOP
STRING Allocate memory for STRINGs STRING 50, 10
IDLE Wait for interrupt IDLE
RROM Run a program in ROM RROM 3
LD@ Load top of stack from user-specified location LD@ 1000H

1D@ A
ST@ Store top of stack at user-specified location ST@ 1000H
ST@ A
Table A-3. Dual Operand Operators

OPERATOR FUNCTION EXAMPLE(S)
+ Addition 1+1
/ Division 102
ha Exponentiation 2%%4
he Muldplication 4*4
. Subtraction 8§-4
.AND. Logical AND 10.AND.5
.OR. Logical OR 2.0R.1
XOR. Logical Exclusive OR 3XOR.2

Table A-4. Single Operand Operators

OPERATOR FUNCTION EXAMPLE(S)
ABS() Absolute Value ABS(-3)
NOT() Ones Complement NOT(0)
INT() Integer INT(3.2)
SGN() Sign SGN(-5)
SQR() Square Root SQR(100)
RND Random Number RND
LOG() Natural Log LOG(10)
EXP() “e’ (2.7182818) TO THE X EXP(10)
SIN() Returns the sine of argument SIN(3.14)
COS() Returns the cosine of argument COS(0)
TAN() Returns the tangent of argument TAN(.707)
ATN() Returns arctangent of argument ARN(1)

Commands, Statements, and Operators: Reference Tables

GFK-0249
Table A-5. Special Function Operators
OPERATOR FUNCTION EXAMPLE(S)
CBY() Read program memory P.CBY(4000)
DBY() Read/assign intemal data memory DBY(99)=10
XBY() Read/assign external data memory P.XBY(10)
GET Read console P.GET
TIME Read/assign the real time clock P.TIME
Table A-6. Stored Constants
CONSTANT FUNCTION EXAMPLE(S)
PI Pl = 3.1415926 Pl
Table A-7. GE Fanuc - NA Custom BASIC Commands
COMMAND FUNCTION EXAMPLE(S)
LSTR Calculate length of a string LSTR $(10), HOWLONG
SWITCH Read DIP switch settings on ASCII/BASIC Module. SWITCH SW
Allows program to monitor board settings
MATCH Does a String comparison MATCH $(1),*YES’’ FLAG
INPB Fetches specified number of characters from the serial INPB $(2),10,2000,FLAG
port and stores them in the specified string.
RENUM@ Renumber the BASIC line numbers RENUM 50, 10, 10
TRANSFER Send/receive data with Series One CPU TRANSFER W2I1FLAG
PORTSET Select 300, 600, 1200, 2400, 4800, 9600, or 19200 baud PORTSET 9600
MOVE Sets a single bit or field of bits MOVE VAR2,VAR],12,4
SPLIT Reads a single bit or field of bits SPLIT VAR1,VAR29,3
DELPRM Deletes a program stored in the archival storage area DELPRM 8
LEDO1or2 Turns the specified LED off LEDO 1
LEDl1or2 Turns the specified LED on LED1 2

B-1
GFK-0249

Appendix B
Miscellaneous Programming Information

Floating Point Format

MCS BASIC-52 stores all floating point numbers in a normalized packed BCD format with an offset
binary exponent. The simplest way to demonstrate the floating point format is to use an example. If the
number PI (3.1415926) were stored in location X, the following would appear in memory:

Table B-1. Sample Floating Point Format

LOCATION VALUE DESCRIPTION

X 81H Exponent - 81H = 10**1, 82H = 10**2, 80H = 10**0, 7FH = 10** -1
etc. The number zero is represented with a zero exponent.

X-1 00H Sign Bit - O0H = Positive, O1H = Negative. Other bits are used as
temps only during a calculation.

X-2 26H Least significant two digits.

X-3 S9H Next least significant two digits.

X-4 41H Next most significant two digits.

X-5 31H Most significant two digits.

Becanse MCS BASIC-52 normalizes all numbers, the most significant digit is never a zero unless the
number is zero.

Storage Allocation

Two 16-bit pointers stored in external memory control the allocation of strings and variables. An
additional two pointers control the allocation of scalar variables and dimensioned variables. These
pointers are located and defined as follows:

Table B-2. Location and Definition of Pointers

LOCATION
(H-L) NAME DESCRIPTION
10AH - 10BH MTOP The top of RAM that is assigned to BASIC.

104H - 105H VARTOP VARTOP = MTOP - (the number of bytes of memory that you have
allocated for strings). If strings are not used, VARTOP = MTOP.
106H - 107H VARUSE | After a NEW, CLEAR, or RUN is executed, VARUSE = VARTOP.
Every time you assign or use a variable, VARUSE is decremented by a
count of 8.

108H - 109H DIMUSE After a NEW, CLEAR, or RUN is executed, DIMUSE = [the length of
the user program that is in RAM memory + the starting address of the
user program in RAM (512) + the length of one floating point number
(6)]. If no program is in RAM memory, DIMUSE = 518 after a
CLEAR is executed.

MCS BASIC-52 stores string variables between VARTOP and MTOP. $(0) is stored from VARTOP to
VARTOP + (user defined string length + 1), $(1) is stored from VARTOP + (user defined string length

B-2 Miscellaneous Programming Information

GFK-0249

+ 1)+ 1 to VARTOP + 2 * (user defined string length + 1), etc. If MCS BASIC-52 attempts to access a
string that is outside the bounds established by MTOP, a MEMORY ALLOCATION error is generated.

Now, scalar variables are stored from VARTOP ‘‘down’’ and dimensioned variables are stored from
DIMUSE “‘up’’. When you dimension a variable either implicitly or explicitly, the value of DIMUSE
increases by the number of bytes required to store that dimensioned variable. For example, if you
execute a DIM A(10) statement, DIMUSE would increase by 66. This is because you are requesting

storage for 11 numbers (A(0) through A(10)) and each number required 6 bytes for storage and 6 * 11 =
66.

As mentioned in the previous example, every time you define a new variable the VARUSE pointer
decrements by a count of 8. Six of the eight counts are due to the memory required to store a floating
point number, and the other two counts are the storage required for the variable name (i.e., Al, B7, etc.).
The variable B7 would be stored as follows:

Table B-3. Storage Allocation

LOCATION VALUE DESCRIPTION

X 37H The ASCT value 7. If B7 were a dimensioned variable, the most significant bit
of this location would be set. In Version 1.1, this location always contains the
ASCT value for the last character used to define a variable.

X-1 42H This location contains the ASCII value of the first character used to define a
variable plus 26 * the number of characiers used to define a variable, if the
variable contains more than 2 characters.

X-2 thru X.7 77 The next six locations would contain the floating point number that the variable
is assigned to, if the variable were a scalar variable. If the variable were
dimensioned, X-2 would contain the limit of the dimension (i.e., the maximum
number of elements in the array) and X-3:X-4 would contain the base address of
the array. This address is equal to the old value of the DIMUSE pointer before
the array was created.

Whenever a new scalar or dimensioned variable is used in a program, MCS BASIC-52 checks both the
DIMUSE and VARUSE pointers to make sure that VARUSE > DIMUSE. If the relationship is not true,
a MEMORY ALLOCATION error is generated.

In Summary:

Strings are stored from VARTOP to MTOP.

Scalar variables are stored from VARTOP ‘‘down”’, and VARUSE points to the next available scalar
location.

Dimensioned variables are stored from the end of the user program in RAM “‘up’’. If no program is in
RAM, this location is 518. DIMUSE keeps track of the number of bytes you have allocated for
dimensioned variables.

If DIMUSE >= VARUSE, a MEMORY ALLOCATION error is generated.

Miscellaneous Programming Information B-3

GFK-0249

Format of an MCS BASIC-52 Program

Line Format

Each line of MCS BASIC-52 text consists of tokens and ASCII characters, plus four bytes of overhead.
Three of these four bytes are stored at the beginning of every line. The first byte contains the length of a
line in binary, and the second two bytes are the line number in binary. The fourth byte is stored at the
end of the line, and this byte is always a ODH or a carriage return in ASCII. An example of a typical
line is shown below. You should assume that this is the first line of a program in RAM.

10 FOR I = 1 TO 10 : PRINT I : NEXT I

Table B-4. Line Format

LOCATION BYTE DESCRIPTION
512 11H The length of the line in binary (17D bytes)
513 00H High byte of the line number.

514 0AH Low byte of the line number.
515 0AOH The token for ““FOR”’.

516 49H The ASCI character “‘I"".
517 OEAH The token for “‘="".

518 31H The ASCI character *‘1°°.
519 0A6H The token for *‘TO"’.

520 31H The ASCII character “‘1°".
521 30H The ASCII character “‘0°".
522 3AH The ASCI character **:"".
5§23 89H The ASCII character “‘“PRINT’’.
524 49H The ASCII character “‘I"".
525 3AH The ASCI character ““:”".
526 97H The token for *‘NEXT"".

527 49H The ASCI character for “‘I"".
528 ODH End of line (carriage return).

To find the location of the next line, the length of the line is added to the location where the length of the
line is stored. In this example, 512 + 17D = 529, which is where the next line is stored.

The END of a program is designated by the value 01H. So, in the previous example, if line 10 were the
only line in the program, location 529 would contain the value 01H. A program simply consists of a
number of lines packed together in one continuous block with the last line ending in a ODH, 01H
sequence.

Archival Storage Area Format

The format of the Archival Storage Area consists of the same line and program format previously
described, except that each program in the Archival Storage Area begins with the value 55H. The value
55H is only used by MCS BASIC-52 to determine if a valid program is present. If you type ROM 6,
MCS BASIC-52 actually goes through the first program stored in the Archival Storage Area line by line
until the END OF PROGRAM (01H) is found. Then, it examines the next location to see if a S5H is
stored in that location. It then goes through that program line by line. This process is repeated 6 times.

B-4 Miscellaneous Programming Information
—— ——— -]
GFK-0249

If the character S5H is not found after the end of a program, MCS BASIC-52 will return with the PROM
MODE error message. This would mean that less than six programs were stored in the Archival Storage
Area.

The first program stored in the Archival Storage Area always begins at location 8010H, and this location
will always contain a SSH. The actual user program, however, will begin at location 8011H.

GFK-0249

Appendix C
Other Software Packages

Using a Software Package Other Than ABMHelper

The following examples show how VTERM, a commercially available terminal emulator package, can
be used for ransferring files between an ASCII/BASIC Module and a diskette on a computer. VIERM
is a product of Coefficient Systems Corporation, 611 Broadway, New York, New York 10012.

You must first, have VTERM installed and running as a terminal emulator. Use the sample screen
below as a general guide. Details of the setup depend on the specific hardware configuration, desired
baud rate, and other criteria.

SETUOP 1 - Terminal, Communications and Printer Setup Name=VIERM
TERMINAL Type: VI100 (ANSI) COMMUNICATIONS Rate: 9600
New line: OFF Data bits/parity: 8 NONE
¥Wrap around: ON Receive parity: CHECK
Scroll: NORMAL Stop bits: ONE
Screen: NORMAL VIDEO Auto xon/xoff: ON
Cursor type: UNDERLINE Local echo: OFF
Margin bell: OFF Com port: 2
DA response: ADVANCED VIDEO On line/local: ON LINE
Status line: ON
Backspace sends: DELETE
Shift-3 displays: ¢
Screen format: 80 x 24 PRINTER Output to: LPT1:
132 column method: SCROLLING After PrtSc: NO FORMFEED
Window movement: MANUAL Extent: ENTIRE SCREEN
Scrollback buffer: ALLOW OVERFLOW Wide: OFF
T T T T T T T T T
234567891123456789212345678931234567894123456789512345678961234567897123456
Use Arrow keys to select, + to change. FS5=Next Setup, Fé6=Help, Esc=End Setup

When the above screen is displayed, follow the on-screen information to make selections or change
parameters as required. After completing the setup in this screen, press the F5 key to select the
following screen, and set the parameters as shown.

SETUP 2 - File Transfer Setup Name=VTERM

Protocol: ASCII TEXT

Maximum send rate: AT BAUD RATE
Wait after lines: FOR SINGLE CEAR
Which char: (62)
End of line: CR-LF
Convert null lines to a space: NO
Remove escape sequences: NO
Stop upon receiving:

Use Arrow keys to select, + to change. FS5=Next Setup, Fé=Help, Esc=End Setup

C-2 Other Software Packages

GFK-0249

Transfer a Program from ASCII/BASIC Module Memory to Diskette

One of the features of this terminal emulator is that it allows you to transfer a program developed and
stored on the ASCII/BASIC Module to disk storage on a computer. The procedure required to transfer a
program stored in the ASCII/BASIC Module’s memory to a diskette in a computer is described below.

e Point the ASCII/BASIC Module to the program to be saved using the ROM1, ROM2, RAM, or
similar commands.

Type LIST. Do not press the Retumn or Enter key.

Type Alt R, which will cause the setup screen shown below to be displayed.

Type in the desired filename, then set the parameters as shown.

Filename : FILENAME
Protocol : ASCII TEXT

If file exists : PROMPT
Ctrl-z Marks BEnd : NO
Remove Characters : (press Ctrl/END with the cursor beres)

Type Alt R again.

Press the Return key. At this point, the program will begin transferring from ASCII/BASIC Module
memory to the computer.

e When the program has finished transferring, press Alt A (to abort the transfer operation).

e Your file should now be stored on disk.

Retrieve a Program on Diskette and Store to the ASCII/BASIC Module

To retrieve a program stored on diskette, and load it into the ASCII/BASIC Module’s memory, use the
following procedure:

e Type RAM and press Return. On many Personal Computers, this will be the Enter key.

e Type NEW, then press Return (or Enter). Ignore this step if you want to merge in a program.

e Type Alt S, you will get the setup screen that was shown above. Enter the correct filename, and make
sure the parameters are the same as shown on the previous screen.

e Type Alt S, this will initiate the disk to ASCII/BASIC Module file transfer.

e The file transfer may end with a SYNTAX ERROR message from the ASCII/BASIC Module.
e Press Return or (Enter), as applicable for your computer.

e Wait until the RXD and TXD LEDs on the ASCII/BASIC Module stop blinking.

e The requested file has been transferred to the ASCII/BASIC Module’s memory and is now ready to
run.

GFK-0249

Appendix D
ASCII Code List

Table D-1. ASCII Code List

ASCH Decimal Hexadecimal ASCO Decimal Hexadecimal ASCI Decimal Hexadecimal
Character Value Value Character Value Value Character Value Value
NUL 0 00 0 48 30 [91 SB
SOH 1 01 1 49 31 \ 92 5C
STX 2 02 2 50 32] 93 5D
ETX 3 03 3 51 33 A 94 SE
EOT 4 04 4 52 34 - 95 SF
ENQ 5 05 5 53 35 ? 96 60
ACK 6 06 6 54 36 a 97 61
BEL 7 07 7 55 37 b 98 62
BS 8 08 8 56 38 c 99 63
HT 9 09 9 57 39 d 100 64
LF 10 0A : 58 3A e 101 65
VT 11 0B : 59 3B f 102 66
FF 12 0C < 60 3C g 103 67
CR 13 0D = 61 3D h 104 68
SO 14 OE > 62 3E i 105 69
SI 15 OF ? 63 3F j 106 6A
DLE 16 10 @ 64 40 k 107 6B
DC1 17 11 A 65 41 1 108 6C
DC2 18 12 B 66 42 m 109 6D
DC3 19 13 C 67 43 n 110 6E
DC4 20 14 D 68 44 o 111 6F
NAK 21 15 E 69 45 P 112 70
SYN 22 16 F 70 46 q 113 71
ETB 23 17 G 71 47 by 114 72
CAN 24 18 H 72 48 s 115 73
EM 25 19 1 73 49 t 116 74
SUB 26 1A J 74 4A u 117 75
ESC 27 1B K 75 4B v 118 76
FS 28 1C L 76 4C w 119 77
GS 29 1D M 77 4D x 120 78
RS 30 1E N 78 4E y 121 79
Us 31 1F (0] 79 4F z 122 TA
Sp 32 20 P 80 50 { 123 7B

! 33 21 Q 81 51 / 124 7C
“ 34 22 R 82 s2 } 125 7D
35 23 S 83 53 - 126 7E
$ 36 24 T 84 54 DEL 127 7F

% 37 25 U 85 55
& 38 26 v 86 56
* 39 27 w 87 57
(40 28 X 88 58
) 41 29 Y 89 59
) 42 2A ¥ A 90 SA
+ 43 2B
y 44 2C
- 45 2D

46 2E
/ 47 2F

A Quick Introduction to W-ED, 5-2
ABMHelper distribution diskette, 4-2
ABMHelper Start-Up, 4-5

ABMHelper, advantages of, 3-1
ABMHelper, configuration of, 3-4
ABMHelper, features of, 4-1
ABMHelper, from floppy disk, 44
ABMHelper, from hard disk, 44
ABMLOC, 64

ABS([expr]), 9-3

Addition operator, 9-1

Advantages of Using ABMHelper, 3-1
AND logical operator, 9-2

Archival Storage Area file commands, 7-1
Archival Storage Area Format, B-3
ASC(), 10-1

ASCT code list, D-1

ASCII/BASIC Module Configuration, 1-3
ASCII/BASIC Module Hardware Features, 2-1
ASCI/BASIC Module troubleshooting, 2-9
ATN([expr]), 9-6

B

BASIC commands, custom, 2-8
BASIC commands, list of, 2-7

BASIC Language, 1-3

Baud Rate Setup, 3-4

Block or Cut and Paste Operations, 5-4

C

CBY([expr]), 11-1

Changing W-ED’s Configuration, 5-1
CHR(), 10-2

CLEARI (Clear Interrupts), 8-1
CLEARS (Clear Stacks), 8-1
CLOCKO, 8-2

CLOCK1, 8-2

Code for Register Data Transfer, 13-2
Command Line and Text Area, 5-4

Index

Command:, 6-1
BURN(cr), 7-2
CONT(cr), 6-1
LIST(cr), 6-2
NEW(cr), 6-3
NULL [integer](cr), 6-3
RUN(cr), 6-1
XFER(cr), 7-1
Commands Used in Command (Monitor)
Mode, 6-8
Commands Used Only in Partitioned
Mode, 2-8

. Commands, Statements, and Operators Not

Supported, 2-9

Commands, Statements, and Operators:
Reference Tables, A-1

Commands: RAM(cr) and ROM (integer)
(cr), 7-1

Comments on Logical Operators .AND., .OR.,
and XOR., 9-2

Communications Port Setup, 3-5

Configuring ABMHelper (Revision 1.02 and
later), 34

Contents of the ABMHelper Distribution
Diskette, 4-2

Control functions, 4-8

COS([expr]), 9-5

CR, 8-17

Creating a Backup Distribution Diskette, 4-2

Creating a Separate W-ED Editor Diskette, 4-2

Creating a Workable ABMHelper Diskette
(Floppy Disk Based System), 4-3

Ctrl E edit function, 3-2

Ctl F edit function, 3-2

Custom commands, 2-8

D

DATA, 8-3

Data Format and Range, 6-4

DBY ([expr]), 11-1

DELPRM, 2-8, 6-9

Description of GE Fanuc - NA Custom
Commands, 6-3

DIP Switch Configuration, 2-5

Index

Distribution diskette, contents of, 4-2
Distribution diskette, creating, 4-2
Division operator, 9-1

Documenting BASIC programs, 3-5
Dual Operand Operators, 9-1

E

Editing, NOSOURCE mode, 3-2
Editing, Quick SOURCE mode, 3-3
Editing, SOURCE mode, 3-2
Editor Command Summary, 5-1
Error Conditions, 6-10

Error messages, 12-1

Example 1 - Transferring Data Between the
ASCI/BASIC Module and the Series
One/One Plus CPU, 13-1

Example 1 - Type a Text File Using
Cul/U, 4-11

Example 2 - Sending Commands to an
OIT, 13-7

Example 2 - Sorted Directory, 4-11

Example of Timeout to Detect CPU in STOP
Mode, 6-5

Example of TRANSFER Command, 13-1

Example of Using Flag, 6-5

Example:, 7-2

Examples of Applications, 13-1

EXP([expr]), 9-5

Expanded Mode of Operation, 2-6

Exponentiation operator, 9-1

Extended ASCI (Graphics) Characters, 5-4

F

Features of ABMHelper, 4-1

File commands, Archival Storage Area, 7-1
FLAG, 6-5

Floating Point Format, B-1

Format of an MCS BASIC-52 Program, B-3
FREE, 114

Function of the ASCII/BASIC Module, 1-1
Functions Used in RUN Mode, 6-5

GFK-0249

G

GE Fanuc - NA Custom BASIC
Commands, 2-8

GE Fanuc - NA Custom Commands,
Description of, 6-3

General Hints, 4-13

General Programming/Debug Hints, 3-6

General Specifications, 1-2

GET, 11-1

GOSUEB, 8-8

H

Hexadecimal Numbers, 1-3, D-1
Hints for Documenting BASIC Programs, 3-5
How Relational Expressions Work, 9-6

I

I/O reference ranges, for addressing
modes, 64

Initial power-up message, 2-8

INPB, 2-8, 6-8

Installing W-ED and ABMHelper on a Hard
Disk System, 4-3

INT([expr]), 9-3

Introduction to W-ED, 5-2

K

Keyboard Conversion Chart, 5-1
Keywords, use of, 2-7

L

LD@, 8-24

LEDO 1 or 2, 2-8

LED1 1 or 2, 2-8

LEN, 114

Line Format, B-3

Lithium battery, replacement of, 2-10
LOG([expr]), 94

Index

GFK-0249

LSTR, 2-8, 6-6

M

Main menu screen, 4-6
MATCH, 2-8, 6-7
Memory Usage For Program Development, 2-6
Menu Option 1 - Terminal Mode, 4-6
Menu Option 2 - Save Program to Disk, 4-9
Menu Option 3 - Load a Program from
Disk, 4-9
Menu Option 4 - Merge a Disk File Into
Program, 4-9
Menu Option 5 - Delete a Range of Lines, 4-9
Menu Option 6 - Directory of Disk Files, 4-9
Menu Option 7 - Temporary Exit to
DOS, 4-10
Menu Option 8 - Set/View Time and
Date, 4-10
Menu Option 9 - Finished With
ABMHelper, 4-10
Messages, error, 12-1
Messages, W-ED, 5-6
Miscellaneous Programming Information, B-1
Modes of Operation for Memory Use, 1-3
Modifying ABMHelper for use with Fast
Computers, 4-11
MOVE, 2-8, 6-6
MTOP, 11-3
MTOP, use of, 1-3
Multiplication operator, 9-1

N

NOSOURCE Mode of Operation, 3-2
NOT({expr]), 9-3

(0

OIT, example of sending commands to, 13-7
Operation, NOSOURCE mode, 3-2
Operation, SOURCE mode, 3-2

Operators and expressions, 9-1

Operators, precedence of, 9-6

Operators, special function, 11-1
Operators, string, 10-1

OR logical operator, 9-2

Other software packages, C-1
Other W-ED Key Actions, 5-3

P

Partitioned Mode of Operation, 2-6

Personal computers, systems tested with
ABMHelper, 4-1

PL, 94

PORTSET, 2-8

Power-up message, 2-8

Precedence of Operators, 9-6

Printer Paging Control, 5-5

Programming hints, general, 3-6

Programming information, miscellaneous, B-1

Q
Quick SOURCE Mode Editing, 3-3

R

RAM, 7-1

READ, 8-3

Reference ranges, 6-4

Register data transfer, example of code, 13-2

Register data transfer, ladder logic
example, 13-3

Relational expressions, use of, 9-6

Relay Ladder Logic for Register Data
Transfer, 13-3

RENUM@, 2-8, 6-8

Replacing the Lithium Battery, 2-10

RESTORE, 8-3

Retrieve a Program on Diskette and Store to
the ASCII/BASIC Module, C-2

RETURN, 8-8

RND, 94

ROM, 7-1

RS-232 Serial Communications Port, 2-2

Run/Trap Mode, 2-6

14

Running ABMHelper from a Hard Disk, 44
Running From Floppy Disk, 4-4

S

SGN([expr]), 9-3
Sign On Message, 2-8
SIN([expr]), 9-5
Single Operand Operators - General
Purpose, 9-3
Single Operand Operators - Log Functions, 9-4
Single Operand Operators - Trig
Functions, 9-5
Software packages, other, C-1
SOURCE Mode of Operation, 3-2
SOURCE/NOSOURCE Configuration, 3-1
SOURCE/NOSOURCE Sub Modes, 3-3
SPC([expr]), 8-16
Special function operators, 11-1
Special Print Formatting Statements, 8-16
Specifications, General, 1-2
SPLIT, 2-8, 6-6
SQR([expr]), 94
ST@, 8-24
Start-up, ABMHelper, 4-5
Starting W-ED From DOS, 5-2
Statement:, 8-1
CLEAR, 8-1
DIM, 84
END, 8-6
GOTO [In num], 8-9
IDLE, 8-22
IF - THEN - ELSE, 8-10
INPUT, 8-11
LET, 8-13
ONERR [In num], 8-14
ONTIME [expr],[In num], 8-14
POP [var], 8-19
PRINT or P., 8-16
PUSH [expr], 8-18
REM, 8-20
RETI, 8-20
RROM (integer), 8-22
STOP, 8-21
STRING [expr],[expr], 8-21

Index

GFK-0249

Statements:, 8-1
CLEARI and CLEARS, 8-1
CLOCK]1 and CLOCKO, 8-2
DATA - READ - RESTORE, 8-3
DO - UNTLL [rel expr], 8-5
DO - WHILE (rel expr], 8-6
FOR - TO -{STEP} - NEXT, 8-7
GOSUB [In num] - RETURN, 8-8
ON [expr] GOSUB [In num],[In num], . . .
[In num] ON [expr] GOTO [In num],[In
num], . . . [In num], 8-10
PHO., PH1., 8-18
ST@ [expr] and LD@ [expr], 8-24
Status Display, 2-1
Storage Allocation, B-1
String operators, 10-1
Subtraction operator, 9-2
SWITCH, 2-8, 6-7
System Control Values, 11-3
System Requirements, 4-1

T

TAB([expr]), 8-16

Tabbing and Margins, 54

TAN([expr]), 9-5

Text Manipulation, 5-5

TIME, 11-2

Time and Date Setup, 3-5

TRANSFER, 2-8

Transfer a Program from ASCI/BASIC
Module Memory to Diskette, C-2

Transfer command, example of use, 13-2

Transfer command, how to use, 13-1

Transfer Command: TRANSFER R/W,
FORMAT, ABMLOC, FLAG, 64

Transferring Register Data, 13-2

Troubleshooting ABMHelper, 4-12

Troubleshooting Guide, 2-9

Troubleshooting the ASCII/BASIC
Module, 2-9

U

Use of Keywords, 2-7

Index

GFK-0249

Using a Software Package Other Than
ABMHelper, C-1

Using ABMHelper, 4-4

Using the F1 - F10 Function Keys, 4-8

Using the Transfer Command, 13-1

Using User-Supplied Routines with
ABMHelper, 4-10

USING(special characters), 8-17

\Y%

VTERM, how to use, C-1

W

W-ED, 5-2
default settings, 5-2
Features, 5-3
Function Keys, 5-3
Messages, 5-6
starting from DOS, 5-2
Workmaster Keyboard, 5-1

X

XBY ([expr]), 11-1
XOR logical Exclusive OR operator, 9-2
XTAL, 11-3

GE Fanuc Automation North America, Inc., Charlottesville, Virginia

GFK-0249A

	Introduction
	Specifications
	Configuration
	Reference Information

	Installation and Configuration
	RS-232 Serial Communications Port
	RTS Signal
	Example
	DIP Switch Configuration
	Memory Usage for Program Development
	Keywords
	Custom BASIC Commands
	Troubleshooting

	Creating and Storing BASIC Programs
	NOSOURCE or SOURCE Mode
	Configuring ABMHelper
	Documenting BASIC Programs
	General Programming Hints

	ABMHelper
	The W-ED Editor
	Commands
	LIST
	NEW, NULL
	Transfer, ABMLOC
	FLAG
	LSTR, SPLIT, MOVE
	SWITCH, MATCH
	INPB, RENUM@
	DELPRM

	Archival Storage Area File Commands
	BURN

	Statements
	CLEAR, CLOCK
	DATA READ-RESTORE
	DIM
	DO UNTIL
	DO WHILE
	FOR-TO-NEXT
	GOSUB
	GOTO
	ON GOSUB, ON GOTO, IF-THEN-ELSE
	INPUT
	LET
	ONERR, ONTIME
	PRINT
	CR
	PH0, PH1, PUSH
	POP
	REM, RET1
	STOP, STRING
	IDLE, RROM
	ST@, LD@

	Operators and Expressions
	Mathematical and Logical Operators
	ABS, NOT, INT, SGN
	SQR, RND, PI, LOG
	EXP, Trig Functions
	Precedence of Operators

	String Operators
	CHR

	Special Function Operators
	TIME
	XTAL, MTOP
	LEN, FREE

	Error Messages
	Application Examples
	Commands, Statements and Operators
	Miscellaneous Programming Information
	Other Software Packages
	ASCII Code List

