

## **GE Fanuc Automation**

## Series Five® Programmable Controllers Data Communications

User's Manual

GFK-0244B

June 1990

# Warnings, Cautions, and Notes as Used in this Publication

## Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

## Caution

Caution notices are used where equipment might be damaged if care is not taken.

#### Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master CIMPLICITY CIMPLICITY Control CIMPLICITY PowerTRAC CIMPLICITY 90-ADS CIMSTAR

Field Control GEnet Genius Genius PowerTRAC Helpmate Logicmaster Modelmaster PowerMotion ProLoop PROMACRO Series Five Series 90 Series One Series Six Series Three VuMaster Workmaster

©Copyright 1996–1997 GE Fanuc Automation North America, Inc. All Rights Reserved

This manual describes the installation, operation, and programming of the Series Five<sup>®</sup> PLC Communications Control Module (CCM). The CCM provides a direct serial communication link to the data communication network.

You should become familiar with the operation of the Series One<sup>®</sup>, Series Three<sup>®</sup>, Series Five<sup>®</sup>, or Series Six<sup>®</sup> PLC (depending on your application) before reading this manual. Refer to the appropriate Series type of Programmable Logic Controller (PLC) communication manual for complete information.

Chapter 1. Introduction: Describes the capabilities of the CCM and possible system configurations of Series One, Series Three, Series Five and Series Six PLCs with the Series Five PLC or host computer.

**Chapter 2. Installation:** Describes the physical layout, configuration, and Series Five PLC installation of the CCM. Provides information need to construct cables to connect the CCM to other devices on the network.

Chapter 3. Memory Map: Identifies the areas in the Series Five PLC internal memory which provide either special functions, system status information, or error reporting information. These items in memory are defined in the input, output and register tables, and the CPU's scratch pad memory.

Chapter 4. Communication Examples: Explains the Series Five PLC ladder logic programming which initiates communications between the CCM and other nodes on the network. Example programs have been included.

Chapter 5. CCM Protocol: Provides reference information on the CCM serial interface protocol and timing to allow the user to write a serial communications driver for a host computer or microprocessor.

Chapter 6. RTU Communications Protocol: Describes in detail the protocol used when configured in Remote Terminal Unit (RTU) mode.

Chapter 7. Additional Protocols: Describes additional modes of operation which provide communication with non-CCM devices such as printers, bar code readers, and personal computers.

Appendix A. CCM Memory Types: Provides an expanded listing of the memory mapping of input and outputs.

#### **Related Publications**

- GEK-90842 Series One/Series One Plus PLC User's Manual
- GEK-25376 Series Three PLC User's Manual
- GEK-90507 Series One/Series Three Remote I/O User's Manual
- GEK-90477 Series One/Series Three PLC Data Communications Manual
- GFK-0122 Series Five PLC User's Manual
- GFK-0023 Logicmaster<sup>®</sup> Five Programming User's Manual
- GEK-25364 Series Six Data Communications Manual
- GEK-96602 Series Six Plus PLC User's Manual

Janet Swisher Technical Writer



| Publication No.                                                                         |                                                                                                                                            | Date of Pu                                                                                                                                                           | ublication                                                                                                                                                                                        | Today's Dat                                                                                        | e                                             |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| GENERAL C                                                                               |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   | ·                                                                                                  |                                               |
| demense of                                                                              | ommento.                                                                                                                                   | Improve                                                                                                                                                              | Acceptable                                                                                                                                                                                        | Good                                                                                               | Exceller                                      |
| Contents                                                                                |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Organization                                                                            |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Accuracy                                                                                |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Clarity                                                                                 |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Completeness                                                                            |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Examples/Illustra                                                                       | ations                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Referencing/Ind                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Readability                                                                             |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| ,                                                                                       |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
| DETAILED C                                                                              | OMMENTS:                                                                                                                                   | (Correct, expar                                                                                                                                                      | nd, etc. – Please be sp                                                                                                                                                                           | pecific.)                                                                                          |                                               |
| Page No.                                                                                | Commen                                                                                                                                     | it                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         | <del></del>                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         |                                                                                                                                            | ·····                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                    |                                               |
| Other suggestion                                                                        |                                                                                                                                            |                                                                                                                                                                      | nt:                                                                                                                                                                                               |                                                                                                    |                                               |
| Other suggestion                                                                        |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                    |                                               |
|                                                                                         | ns for improv                                                                                                                              | ring this docume                                                                                                                                                     | nt:                                                                                                                                                                                               |                                                                                                    |                                               |
|                                                                                         | ns for improv                                                                                                                              | ring this docume                                                                                                                                                     | nt:                                                                                                                                                                                               | you rate this doc                                                                                  | ument ?                                       |
|                                                                                         | ns for improv                                                                                                                              | ring this docume                                                                                                                                                     | nt:                                                                                                                                                                                               | l you rate this doo                                                                                |                                               |
| As compared to                                                                          | ns for improv<br>other manufa<br>Sup                                                                                                       | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co                                                                                                         | nt:<br>lar product, how would<br>mparable D                                                                                                                                                       | you rate this doc                                                                                  | ument ?                                       |
| As compared to                                                                          | ns for improv<br>other manufa<br>Sup                                                                                                       | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co                                                                                                         | nt:                                                                                                                                                                                               | you rate this doc                                                                                  | ument ?                                       |
| As compared to Commments:                                                               | ns for improv<br>other manufa<br>Sup                                                                                                       | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co                                                                                                         | nt:<br>lar product, how would<br>mparable D                                                                                                                                                       | l you rate this doc<br>Inferior 🗖 D                                                                | on't Know                                     |
| As compared to Commments:                                                               | ns for improv<br>other manufa<br>Sup                                                                                                       | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co                                                                                                         | nt:<br>lar product, how would<br>mparable D                                                                                                                                                       | l you rate this doc<br>Inferior 🗖 D                                                                | ument ?                                       |
| As compared to Commments:                                                               | ns for improv<br>other manufa<br>Sup                                                                                                       | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co                                                                                                         | nt:<br>lar product, how would<br>mparable D                                                                                                                                                       | l you rate this doc<br>Inferior 🗖 D                                                                | on't Know                                     |
| As compared to Commments:                                                               | ns for improv<br>other manufa<br>Sup<br>ed in subscrit                                                                                     | ring this docume<br>acturers of a simi<br>perior <b>D</b> Co<br>ping to a docume                                                                                     | nt:<br>lar product, how would<br>mparable D                                                                                                                                                       | l you rate this doc<br>Inferior 🗖 D                                                                | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrib                                                                                     | ring this docume<br>acturers of a simi<br>perior Co<br>bing to a docume<br>ATION:                                                                                    | nt:<br>iar product, how would<br>mparable D<br>entation update plan?                                                                                                                              | I you rate this doc<br>Inferior D<br>Yes D                                                         | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>INFORMA                                                                          | ring this docume<br>acturers of a simi<br>berior <b>D</b> Co<br>bing to a docume<br>ATION:<br>ler function that                                                      | nt:<br>lar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre                                                                                                     | I you rate this doc<br>Inferior D<br>Yes D                                                         | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>INFORMA<br>of user/read                                                          | ring this docume<br>acturers of a simi<br>perior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer                                                   | nt:<br>iar product, how would<br>mparable D<br>entation update plan?                                                                                                                              | I you rate this doc<br>Inferior D<br>Yes D                                                         | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>INFORMA                                                                          | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer                                                   | nt:<br>lar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre                                                                                                     | I you rate this doc<br>Inferior D<br>Yes D                                                         | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>INFORMA<br>of user/read                                                          | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C                                                 | nt:<br>iar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre<br>Programmer                                                                                       | I you rate this doc<br>Inferior D<br>Yes D                                                         | on't Know                                     |
| As compared to Comments:                                                                | ns for improv<br>other manufa<br>Sup<br>ed in subscrite<br>INFORMA<br>of user/read<br>System<br>Distribut                                  | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C                                        | nt:<br>lar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre<br>Programmer<br>Maintenance                                                                        | I you rate this doc<br>Inferior D<br>Yes D<br>Sent:                                                | n't Know                                      |
| As compared to a<br>Commments:<br>Are you intereste<br>APPLICATION<br>Indicate the type | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>iNFORMA<br>of user/read<br>System<br>Distribut<br>OEM<br>Installati              | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C<br>on C                                | nt:<br>lar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre<br>Programmer<br>Maintenance<br>Operator<br>Other (Please Specify                                   | you rate this doc<br>Inferior D<br>Yes D<br>Sent:                                                  | No                                            |
| As compared to a<br>Commments:<br>Are you intereste<br>APPLICATION<br>Indicate the type | ns for improv<br>other manufa<br>Sup<br>ed in subscrite<br>INFORM/<br>of user/read<br>System<br>Distribut<br>OEM<br>Installati<br>ent: Ser | ring this docume<br>acturers of a simi<br>perior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C<br>on C                                | nt:                                                                                                                                                                                               | you rate this doc<br>Inferior D<br>Yes D<br>Yes D                                                  | Series Six                                    |
| As compared to a<br>Commments:<br>Are you intereste<br>APPLICATION<br>Indicate the type | ns for improv<br>other manufa<br>Sup<br>ed in subscrite<br>INFORM/<br>of user/read<br>System<br>Distribut<br>OEM<br>Installati<br>ent: Ser | ring this docume<br>acturers of a simi<br>perior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C<br>on C                                | nt:<br>lar product, how would<br>mparable D<br>entation update plan?<br>you most nearly repre<br>Programmer<br>Maintenance<br>Operator<br>Other (Please Specify                                   | you rate this doc<br>Inferior D<br>Yes D<br>Yes D                                                  | No                                            |
| As compared to a<br>Comments:<br>Are you intereste<br>APPLICATION<br>Indicate the type  | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>iNFORMA<br>of user/read<br>System<br>Distribut<br>OEM<br>Installati<br>ent: Ser  | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C<br>on C<br>ties 90-70 C<br>ties Five C | nt:<br>lar product, how would<br>mparable<br>entation update plan?<br>you most nearly repre<br>Programmer<br>Maintenance<br>Operator<br>Other (Please Specify<br>Series 90-30<br>Series One<br>Ge | I you rate this doc         Inferior       D         Yes       D         Yes       Sent:         ) | Aument ?<br>on't Know  No No Series Six Other |
| As compared to a<br>Comments:<br>Are you intereste<br>APPLICATION<br>Indicate the type  | ns for improv<br>other manufa<br>Sup<br>ed in subscrib<br>iNFORMA<br>of user/read<br>System<br>Distribut<br>OEM<br>Installati<br>ent: Ser  | ring this docume<br>acturers of a simi<br>berior Co<br>bing to a docume<br>ATION:<br>ler function that<br>Designer C<br>tor C<br>on C<br>ties 90-70 C<br>ties Five C | nt:                                                                                                                                                                                               | I you rate this doc         Inferior       D         Yes       D         Yes       Sent:         ) | Aument ?<br>on't Know  No No Series Six Other |

## From:

| Title:<br>Company:<br>Address:<br>City/State/Zip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name:                                                 |                                  |
| Address:   City/State/Zip:   Telephone:   Fold Here   No Postage   No Postage   Necessary   If Mailed   In The   United States <b>BUSINESS REPLY MAIL</b> FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA POSTAGE WILL BE PAID BY ADDRESSEE: ATTENTION MANAGER TECHNICAL PUBLICATIONS <b>GE Fanue Automation North America Inc</b> P OBX 8106 CHARLOTTESVILLE VA 22907-6063 Inhibidilinihinihinihinihinihinihinihinihinihin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Title:                                                |                                  |
| City/State/Zip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Company:                                              |                                  |
| Fold Here         No Postage         Necessary         If Mailed         In The         United States         BUSINESS REPLY MAIL         FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA         POSTAGE WILL BE PAID BY ADDRESSEE:         ATTENTION MANAGER TECHNICAL PUBLICATIONS         GE Fanuc Automation North America Inc         P O BOX 8106         CHARLOTTESVILLE VA 22907-6063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Address:                                              |                                  |
| Fold Here         Image: State St | City/State/Zip:                                       |                                  |
| No Postage<br>Necessary<br>If Mailed<br>In The<br>United States<br>BUSINESS REPLY MAIL<br>FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA<br>POSTAGE WILL BE PAID BY ADDRESSEE:<br>ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Telephone:                                            |                                  |
| No Postage<br>Necessary<br>If Mailed<br>In The<br>United States<br>BUSINESS REPLY MAIL<br>FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA<br>POSTAGE WILL BE PAID BY ADDRESSEE:<br>ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | -                                |
| No Postage<br>Necessary<br>If Mailed<br>In The<br>United States<br>BUSINESS REPLY MAIL<br>FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA<br>POSTAGE WILL BE PAID BY ADDRESSEE:<br>ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                  |
| No Postage<br>Necessary<br>If Mailed<br>In The<br>United States<br>BUSINESS REPLY MAIL<br>FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA<br>POSTAGE WILL BE PAID BY ADDRESSEE:<br>ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                  |
| Image: Second state state       Image: Second state state         BUSINESS REPLY MAIL       FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA         POSTAGE WILL BE PAID BY ADDRESSEE:       Image: Second state         ATTENTION MANAGER TECHNICAL PUBLICATIONS       GE Fanuc Automation North America Inc         P O BOX 8106       CHARLOTTESVILLE VA 22907-6063         Inhuhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                  |
| FIRST CLASS MAIL PERMIT NO. 995 CHARLOTTESVILLE, VA<br>POSTAGE WILL BE PAID BY ADDRESSEE:<br>ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063<br>Inhuhhhhhhhhhhhhhhhhhhhhh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | Necessary<br>If Mailed<br>In The |
| ATTENTION MANAGER TECHNICAL PUBLICATIONS<br>GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063<br>Inhuhhhhhhhhhhhhhhhhhhhhhhhhhh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                  |
| GE Fanuc Automation North America Inc<br>P O BOX 8106<br>CHARLOTTESVILLE VA 22907-6063<br>Inhuhhhhhhhhhhhhhhhhhhhhh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POSTAGE WILL BE PAID BY ADDRESSEE:                    |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GE Fanuc Automation North America Inc<br>P O BOX 8106 |                                  |
| Fold Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fold Here                                             |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                  |

1

1

| CHAPTER 1. | INTRODUCTION                                               |              |
|------------|------------------------------------------------------------|--------------|
|            | Communication Capabilities                                 | 1-1          |
|            | System Configuration                                       | 1-1          |
|            | Communications Control Module (CCM) Specifications         | 1-2          |
|            | Interface Compatibility                                    | 1-3          |
| CHAPTER 2. | INSTALLING THE SERIES FIVE CCM                             |              |
|            | CCM Physical Layout                                        | 2-1          |
|            | CCM Module Internal Functions                              | 2-2          |
|            | Jumper Connection (Shorting Plug)                          | 2-3          |
|            | DIP Switch Package                                         | 2-3<br>2-4   |
|            | DIP Switch Setting<br>Slave Station Addressing             | 2-4<br>2-5   |
|            | Response Delay Time                                        | 2-5<br>2-5   |
|            | Data Rate Selection                                        | 2-5<br>2-5   |
|            | Series Five CCM Timing                                     | 2-6          |
|            | CCM Front Panel                                            | 2-7          |
|            | LED Description *                                          | 2-8          |
|            | On-Line/Off-Line Selector Switch                           | 2-8          |
|            | Communication Ports                                        | 2-9          |
|            | RS-232 (J1) Connection                                     | 2-10         |
|            | RS-422 (J2) Connection                                     | 2-11         |
|            | Using Port 1 (J1) for RS-232C Signals                      | 2-12         |
|            | Cable Configuration                                        | 2-13         |
|            | Connector Specification                                    | 2-13         |
|            | Cable Specifications                                       | 2-13         |
|            | Cable Wiring                                               | 2-14<br>2-15 |
|            | Installing the CCM<br>Series Five CCM Installation         | 2-13         |
|            | Communication Network Configurations                       | 2-15         |
|            | Multidrop Network                                          | 2-15         |
|            | RS-232C to RS-422 Converter (CCM as Slave)                 | 2-17         |
|            | CCM Connected as Master Station                            | 2-18         |
|            | CCM Connected to Other PLCs                                | 2-19         |
|            | Multiple CCM Buses (CCM as Master, CCM as Slave)           | 2-20         |
|            | Complex Networks                                           | 2-21         |
|            | Non-Practical Networks                                     | 2-23         |
| CHAPTER 3. | MEMORY MAP                                                 |              |
|            | Series Five CCM/CPU Mapping                                | 3-1          |
|            | Register Definition                                        | 3-2          |
|            | Special Inputs Definition                                  | 3-4          |
|            | System Operation/Status                                    | 3-4          |
|            | Smart Module Communication Status                          | 3-5          |
|            | Genius Communications Status<br>Special Outputs Definition | 3-6<br>3-7   |
|            | Special Outputs Definition<br>Diagnostic Status Words      | 3-7<br>3-9   |
|            | Series Five Scratch Pad                                    | 3-9          |
|            | Module ID. and Error Codes                                 | 3-15         |
|            |                                                            |              |

| Con | ter | ۱ť |
|-----|-----|----|
| COM |     |    |

|            |                                                                              | GFK-0244     |
|------------|------------------------------------------------------------------------------|--------------|
|            |                                                                              |              |
| CHAPTER 3. | MEMORY MAP (cont)                                                            | 2 17         |
|            | Functions That Write Data to CPU Memories                                    | 3-17<br>3-17 |
|            | Set/Reset Bit (Through Scratch Pad) Function                                 | 3-18         |
|            | Force ON Function<br>Force OFF Function                                      | 3-18         |
|            |                                                                              | 3-18         |
|            | Executing the Bit Set/Reset Function<br>Data Monitoring Through a CCM Device | 3-19         |
|            | Request Buffer                                                               | 3-19         |
|            | Request Buffer                                                               | 3-20         |
|            | Executing the Data Monitoring Function                                       | 3-20         |
|            | Example of Data Monitor Request Function                                     | 3-21         |
|            | Content of buffer at function request:                                       | 3-21         |
|            | Content of buffer after function is complete:                                | 3-21         |
| CHAPTER 4. | COMMUNICATION EXAMPLES                                                       |              |
|            | Read/Write CCM                                                               | 4-1          |
|            | Command Symbology                                                            | 4-2          |
|            | CCM/CPU Memory Mapping                                                       | 4-2          |
|            | Setup Registers for Read/Write                                               | 4-3          |
|            | Read CCM                                                                     | 4-3          |
|            | Write CCM                                                                    | 4-3          |
|            | Programming the Read/Write Instruction                                       | 4-3          |
|            | Programming Examples                                                         | 4-4          |
|            | Reading from a Remote CCM Device                                             | 4-4          |
|            | Writing to a Remote CCM Device                                               | 4-4          |
| CHAPTER 5. | SERIAL INTERFACE PROTOCOL                                                    |              |
|            | Introduction, Master-Slave Protocol                                          | 5-1          |
|            | Asynchronous Data Format                                                     | 5-1          |
|            | Control Character Coding                                                     | 5-1          |
|            | Enquiry Response Delay                                                       | 5-2          |
|            | Normal Sequence*, Master-Slave                                               | 5-2          |
|            | Normal Sequence Protocol Format                                              | 5-3          |
|            | Master-Slave Normal Sequence Flow Charts                                     | 5-4          |
|            | Normal Sequence, Master (See Figure 5-5)                                     | 5-4          |
|            | Normal Response, Slave (See Figure 5-6)                                      | 5-4          |
|            | Write Data Blocks, Master or Slave (See Figure 5-7)                          | 5-9          |
|            | Read Data Blocks, Master or Slave (See Figure 5-8)                           | 5-9          |
|            | Master-Slave Message Transfers                                               | 5-9          |
|            | Header Block                                                                 | 5-9          |
|            | Target ID Number                                                             | 5-10         |
|            | Data Flow Direction and Memory Type                                          | 5-10         |
|            | Number of Complete Data Blocks to Follow Header                              | 5-11         |
|            | Number of Bytes in Incomplete Last Block                                     | 5-11         |
|            | Source ID Number                                                             | 5-11         |
|            | Text Data Block                                                              | 5-11<br>5-11 |
|            | Header and Text Data Block Response                                          | 5-11         |
|            | Message Termination                                                          | 5-11         |
|            | Timing Considerations<br>Serial Link Timeouts                                | 5-12         |
|            | Turn-Around Delays                                                           | 5-12         |
|            | I UIII-MIOUIIU DEIAYS                                                        | 5-12         |

•

## Content

| GFK-0244 |      |                                                                                      |            |
|----------|------|--------------------------------------------------------------------------------------|------------|
| CHAPTER  | 5.   | SERIAL INTERFACE PROTOCOL (cont)                                                     |            |
|          |      | Communication Errors                                                                 | 5-13       |
|          |      | Invalid Header                                                                       | 5-13       |
|          |      | Invalid Data                                                                         | 5-13       |
|          |      | Invalid NAK, ACK, or EOT                                                             | 5-14       |
|          |      | Serial Link Timeout                                                                  | 5-14       |
| CHAPTER  | 6.   | RTU COMMUNICATIONS PROTOCOL                                                          |            |
|          |      | Introduction                                                                         | 6-1        |
|          |      | Message Format                                                                       | 6-1        |
|          |      | Message Types                                                                        | 6-2        |
|          |      | Query                                                                                | 6-2        |
|          |      | Normal Response                                                                      | 6-2        |
|          |      | Error Response                                                                       | 6-2        |
|          |      | Message Fields                                                                       | 6-2        |
|          |      | Station Address                                                                      | 6-2        |
|          |      | Function Code                                                                        | 6-2        |
|          |      | Information Field                                                                    | 6-3        |
|          |      | Error Check Field                                                                    | 6-3        |
|          |      | Character Format                                                                     | 6-3        |
|          |      | Message Termination                                                                  | 6-4        |
|          |      | Timeout Usage                                                                        | 6-4        |
|          |      | Cyclic Redundancy Check (CRC)                                                        | 6-5<br>6-6 |
|          |      | Calculating the CRC-16                                                               | 6-6        |
|          |      | Example CRC-16 Calculation                                                           | 6-8        |
|          |      | Calculating the Length of Frame                                                      | 6-9        |
|          |      | Table Addresses                                                                      | 6-10       |
|          |      | Message Descriptions                                                                 | 6-30       |
|          |      | Communication Errors                                                                 | 6-30       |
|          |      | Invalid Query Message                                                                | 6-30       |
|          |      | Invalid Function Code Error Response (1)                                             | 6-30       |
|          |      | Invalid Address Error Response (2)                                                   | 6-31       |
|          |      | Invalid Data Value Error Response (3)<br>Query Processing Failure Error Response (4) | 6-31       |
|          |      | Serial Link Timeout                                                                  | 6-31       |
|          |      | Invalid Transactions                                                                 | 6-31       |
|          |      | Error Conditions                                                                     | 6-32       |
| CHAPTER  | . 7  | ADDITIONAL PROTOCOLS                                                                 |            |
| CHAITER  | . /. | Overview                                                                             | 7-1        |
|          |      | Summary of Mode Types                                                                | 7-1        |
|          |      | Mode 1                                                                               | 7-2        |
|          |      | Mode 2                                                                               | 7-2        |
|          |      | Modes 3, 4, and 5                                                                    | 7-2        |
|          |      | Configuring the Mode Type                                                            | 7-2        |
|          |      | Mode 1 - Unformatted Transmitting                                                    | 7-3        |
|          |      | Mode 2 - Bar Code Reader Receiving                                                   | 7-4        |
|          |      | Mode 3 - Unformatted Transmitting, and/or "Receiving                                 |            |
|          |      | with CR LF Terminator"                                                               | 7-6        |
|          |      | Mode 4 - Unformatted Transmitting, and/or "Receiving                                 |            |
|          |      | with CR Terminator'                                                                  | 7-7        |

vii

Content

|             |                                                                                     | GFK-0244 |
|-------------|-------------------------------------------------------------------------------------|----------|
| CHAPTER 7.  | ADDITIONAL PROTOCOLS (cont)<br>Mode 5 - Unformatted Transmitting, and/or "Receiving |          |
|             | with CR LF Terminator", and Compare on Reception                                    | 7-8      |
|             | Additional Protocol Summary                                                         | 7-9      |
| APPENDIX A. | CCM Memory Types                                                                    | A-1      |

Figure

| 1-1  | Master/Slave Multidrop Serial Data Communication Link | 1-1  |
|------|-------------------------------------------------------|------|
| 2-1  | Communication Control Module (CCM) Physical Layout    | 2-1  |
| 2-2  | Communication Control Module (CCM) Internal PWB       | 2-2  |
| 2-3  | CCM, PWB DIP Switch Package                           | 2-3  |
| 2-4  | Series Five CCM Timing Sequence                       | 2-6  |
| 2-5  | Communication Control Module (CCM) Front Panel        | 2-7  |
| 2-6  | CCM, RS-232C Connector Layout                         | 2-10 |
| 2-7  | CCM, RS-422 Connector Layout                          | 2-11 |
| 2-8  | Port 1, RS-232C, Example Wiring Connection            | 2-12 |
| 2-9  | Port 1, Connection to Host Computer                   | 2-12 |
| 2-10 | Port 1, Connection to Modem                           | 2-12 |
| 2-11 | Connector Configuration                               | 2-13 |
| 2-12 | Series Five PLC Rack                                  | 2-15 |
| 2-13 | RS-422 Network Using the IC630CCM390 or               |      |
|      | IC655CCM590 Converter Box                             | 2-16 |
| 2-14 | Network Using the CCM as a RS-232C to RS-422          |      |
|      | Converter                                             | 2-17 |
| 2-15 | CCM as the Master Station                             | 2-18 |
| 2-16 | CCM Connected to the Series 90-30 PLC                 | 2-19 |
| 2-17 | RS-232C to RS-422 Converter                           | 2-20 |
| 2-18 | Complex Networks (Multiple Masters)                   | 2-22 |
| 2-19 | Complex Networks (Multiple Hosts)                     | 2-22 |
| 2-20 | Illegal Network (Multi - Master Stations)             | 2-23 |
| 2-21 | Wired as a Master and Set as a Slave                  | 2-23 |
| 4-1  | Read CCM/Write CCM, Move Data Instruction             | 4-1  |
| 5-1  | Serial Data Format                                    | 5-1  |
| 5-2  | Enquiry Sequence from Master to Target Slave          | 5-2  |
| 5-3  | Data Transfer from Master to Slave                    | 5-3  |
| 5-4  | Data Transfer from Slave to Master                    | 5-3  |
| 5-5  | N Sequence, Master                                    | 5-5  |
| 5-6  | N Response, Slave                                     | 5-6  |
| 5-7  | Write Data Blocks, Master or Slave                    | 5-7  |
| 5-8  | Read Data Blocks, Master or Slave                     | 5-8  |
| 5-9  | Serial Header Format                                  | 5-10 |
| 6-1  | RTU Message Transfers                                 | б-1  |
| 6-2  | Cyclic Redundancy Check (CRC) Register                | 6-5  |
| 6-3  | System Configuration (Byte 1)                         | 6-21 |

Table

| 1-1  | General Specifications                            | 1-2  |
|------|---------------------------------------------------|------|
| 1-2  | Transmission Specifications                       | 1-2  |
| 2-1  | DIP Switch (SW1) Setting                          | 2-4  |
| 2-2  | DIP Switch (SW2) Setting                          | 2-4  |
| 2-3  | CCM ID. Slave Station Address (DIP SW 1)          | 2-5  |
| 2-4  | Response Delay Time (DIP SW 2)                    | 2-5  |
| 2-5  | Data Rate Selection (DIP SW 2)                    | 2-5  |
| 2-6  | LEDs Diagnostic Display (CCM2 Mode)               | 2-8  |
| 2-7  | Port 1 (J1) Pin Definition for RS-232C Connector  | 2-10 |
| 2-8  | Port 2 (J2) Pin Definition for RS-422 Connector   | 2-11 |
| 2-9  | Cable Specifications                              | 2-13 |
| 3-1  | Series Five CCM/CPU Mapping                       | 3-1  |
| 3-2  | Reserved Register Definition                      | 3-2  |
| 3-3  | Special Internal Inputs Definition (Run Time)     | 3-4  |
| 3-4  | Special Internal Inputs Definition (Smart Module) | 3-5  |
| 3-5  | Special Internal Inputs Definition (Genius)       | 3-6  |
| 3-6  | Special Internal Output Definition                | 3-7  |
| 3-7  | Diagnostic Status Words                           | 3-9  |
| 3-8  | Register Content                                  | 3-9  |
| 3-9  | Port Error Codes Description                      | 3-10 |
| 3-10 | Series Five Scratch Pad Definition                | 3-11 |
| 3-11 | Internal Module ID. and Error Codes               | 3-15 |
| 3-12 | Request Buffer Entries                            | 3-20 |
| 5-1  | Control Character Codes                           | 5-2  |
| 5-2  | Data Flow Direction (Byte 4)                      | 5-10 |
| 5-3  | Serial Link Timeouts                              | 5-12 |
| 6-1  | RTU Turn-Around Time                              | 6-4  |
| 6-2  | RTU Message Length                                | 6-8  |
| 6-3  | RTU Table Addresses                               | 6-9  |
| 6-4  | RTU Mode LED Diagnostic Display                   | 6-32 |
| 7-1  | Mode 1 - DIP Switch Setting                       | 7-3  |
| 7-2  | Mode 2 - DIP Switch Setting                       | 7-5  |
| 7-3  | Mode 3 - DIP Switch Setting                       | 7-6  |
| 7-4  | Mode 4 - DIP Switch Setting                       | 7-7  |
| 7-5  | Mode 5 - DIP Switch Setting                       | 7-8  |
| 7-6  | Additional Protocol Summary                       | 7-9  |
| 7-7  | Setup and References                              | 7-9  |
| A-1  | CCM Memory Types 2 and 4 (Inputs/Byte)            | A-1  |
| A-2  | CCM Memory Types 3 and 5 (Outputs/Byte)           | A-6  |
|      |                                                   |      |

This chapter describes the capabilities and system configurations for the Series Five® PLC Communications Control Module (CCM) for serial communications with the Series One®, Series Three®, Series Five or Series Six® family of Programmable Logic Controllers (PLCs).

## **Communication Capabilities**

Communication Control Modules (CCM) can be installed only in the Series Five CPU rack to provide serial data communications between the Series Five PLC and other PLCs, or host computers on the network. Operational characteristics of the CCM are as follows:

- Master-to-Slave, or Peer-to-Peer\* communication
- High execution rate through Random Access Memory (RAM), shared with CPU RS-232C, or RS-422
- Data transmission error checking
- Built in RS-232C to RS-422 conversion
- Remote Terminal Unit (RTU) protocol capability

\*IC655CCM500E (Rev.E) module or later

### System Configuration

The CCM plugs directly into the Series Five PLC rack and provides a serial data communication link to other nodes on the multidrop network. Figure 1-1 identifies the major components of the Multidrop network and how they relate to the Series Five CCM.

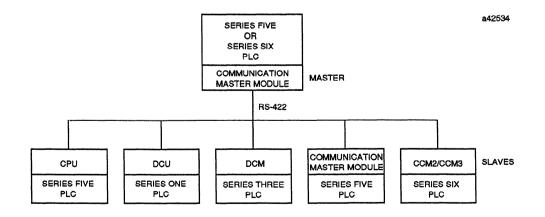



Figure 1-1. Master/Slave Multidrop Serial Data Communication Link

## 1-1

## **Communications Control Module (CCM) Specifications**

The hardware, electrical and specifications for the CCM communications module (IC655CCM500) are defined in this section.

| Dimensions:          | 41W X 250H X 129D (mm)                                                              |
|----------------------|-------------------------------------------------------------------------------------|
|                      | 1.6W X 9.8H X 5.9D (inches)                                                         |
| Space Requirements:  | One Series Five PLC I/O slot any I/O slot (0-7) in the CPU base (eight CCMs maximum |
|                      | per Series Five CPU)                                                                |
| Power Requirements:  | 5V dc $\pm 5\%$ , 1.0A Max. (Supplied by rack power supply)                         |
| Ambient Temperature: | 0° to 60°C                                                                          |
| Storage Temperature: | -20° to +70°C                                                                       |
| Humidity:            | 5% to 95% RH. (non-condensing)                                                      |
| Dielectric Voltage:  | Withstand more than 1500 V ac, 1-minute (between Logic CircuitCommunication         |
|                      | lineEarth GroundCircuit Common)                                                     |
| Noise Immunity:      | Meets NEMA ICS3-304 and impulse 1000V, 1 msec. pulse                                |

## Table 1-1. General Specifications

## Table 1-2. Transmission Specifications

| Linkable Units: | 90 Units Max using IC630CCM390 or IC655CCM590, RS-232C/RS-422 converter/repeater |  |
|-----------------|----------------------------------------------------------------------------------|--|
| System:         | Half-Duplex, 8-bit Asynchronous transmission                                     |  |
|                 | Parity: Odd, None                                                                |  |
|                 | Serial Data Format: 1 Start bit, 8 Data bits, 1 Parity bit or none, 1 Stop bit.  |  |
|                 | (Except "Additional Protocol Mode 2" which requires even parity)                 |  |
| Standard:       | RS-422 and RS-232C                                                               |  |
| Distance:       | 1.2Km (4000 feet) Max RS-422                                                     |  |
|                 | 15 meters (50 feet) Max RS-232C                                                  |  |
| Data Rate:      | Selectable 300, 600, 1200, 2400, 4800, 9600 or 19200 bits/sec.                   |  |
| Protocol:       | CCM2 or CCM3/RTU                                                                 |  |
| Error Checking: | Parity check, LRC check, CRC-16 (RTU mode)                                       |  |

## **Interface Compatibility**

- Memory Mode: Some software packages that interface to the "Series Six" PLC use the "absolute addressing" mode which is available with Series Six CCM2 communications. This mode is <u>not</u> available with the Series Five PLC because the CCM protocol only allows a memory space of up to 64K to be addressed, and the Series Five CPU uses additional memory above 64K. The Series Five PLC retains all the memory types of the original Series Six PLC except absolute addressing (memory type 0).
- Memory Addressing: Except for the RTU mode, the Series Five CCM uses "byte" oriented addressing for I/O and override references. This method of addressing is similar to the CCM implementation for the Series One and Series Three PLC, rather than the "point" oriented addressing used in the Series Six PLC. The "start address" in the CCM header to the Series Five PLC is the byte number which includes the desired data. Software packages that use this addressing method to interface the Series Six PLC may need to be re-written for the Series Five PLC. If the software interfaces only with registers, the application will probably be compatible.
- Memory Mapping: The mapping of I/O tables within the I/O memory types should be given particular attention. These tables are the I/O 1+, I/O 2+ and I/O in ascending order of the starting address. The override tables for these status tables are also in the same order. Refer to Table 3.1, CCM/CPU Memory Mapping in Chapter 3, and Table 6.3, RTU Table Addressing in Chapter 6.
- Scratch Pad Modification: The Series Five PLC contains a great deal of setup and status information in its scratch pad (memory type 6). Before writing to this memory, for any reason, it is <u>STRONGLY</u> recommended that you consult GE Fanuc Automation or your nearest field service office.
- **Target Address:** If a Series Six PLC is being used as a master CCM device with the Series Five PLC as a CCM slave, it should be noted that the "target starting addresses" do not need to be on byte boundaries. Each address is a byte address from the Series Five PLC perspective. Also, be sure to note the locations of the I/O tables as mentioned in "Memory Mapping" comments above.

. .

This chapter describes the Communications Control Module (CCM) physical layout, module features, configuration, and installation in the Series Five CPU rack.

- CCM Physical Layout
- CCM Internal Functions
- Module Front Panel
- Communication Ports
- Cable Configuration
- Module Installation
- Network Configurations

## **CCM Physical Layout**

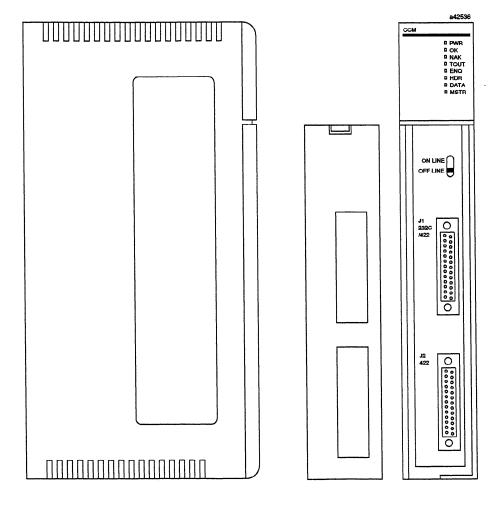



Figure 2-1. Communication Control Module (CCM) Physical Layout

## 2-1

## **CCM Module Internal Functions**

The CCM module contains an internal Printed Wired Board (PWB) which is visible through the cutout on the left side of the module housing. The following user items are accessible through this opening:

- Two Dual-In-Line (DIP) switch packages (SW1, SW2)
- One jumper connection location (F-G, G-G)

Set the DIP switches (SW1 and SW2) and position the Jumper before installing the CCM module into the Series Five PLC rack. Refer to Tables 2-1, 2-2 for the switch settings and Figure 2-2 below for the PWB component location.

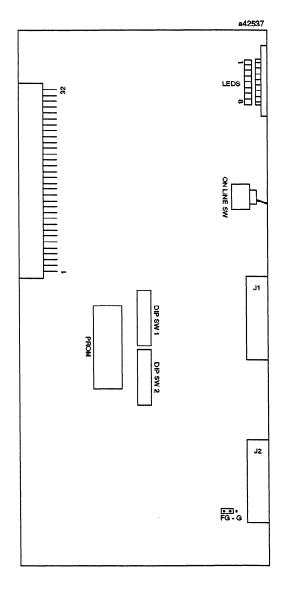



Figure 2-2. Communication Control Module (CCM) Internal PWB

#### Jumper Connection (Shorting Plug)

By changing the position of the jumper connection (Shorting Plug) located on the PWB, it is possible to connect or disconnect between Earth-Ground (FG) and 0V of the CCM communication circuit. Refer to Figure 2-2 for the Jumper location on the PWB.

- Jumper Position (F-G) Earth Ground is connected to internal 0V. This is the default position.
- Jumper Position (G-G) Earth Ground is NOT connected to internal 0V. Consult GE Fanuc Automation before moving the jumper to this position.

#### **DIP Switch Package**

o · · ·

. .

The two switch packages (Sw1, Sw2) located on the PWB are used to set the CCM communication protocol parameters.

Switch Package 1: (SW1) selects the network, station address, and master/slave communication protocol.

| Switches 1-7, | Sets the slave station address | (Sw No. 1 = LSB, Sw No. 7 = MSB)        |
|---------------|--------------------------------|-----------------------------------------|
| Switch 8,     | Switch should be ON            | for RTU mode, or Peer mode              |
|               | Switch should be OFF           | for Master, or Slave station selection. |
| Switch 9,     | Switch should be ON            | for RTU, or Master mode                 |
|               | Switch should be OFF           | for Peer, or Slave mode.                |

Switch Package 2: (SW2) selects the data type, delay time and data transmission rate.

| Switches 1-3,   | Select the data rate           | 300 - 19200 bits/sec                  |
|-----------------|--------------------------------|---------------------------------------|
| Switch 4,       | Parity select                  | ON = odd, OFF = none                  |
| Switch 5,       | Factory Diagnostic mode        | OFF                                   |
| Switch 6,       | Turnaround delay               | ON = 10 msec. delay, $OFF = no$ delay |
| Switch 7 and 8, | Response delay time            | 0 - 500 msec.                         |
| Switch 9        | Should be in the OFF position. |                                       |
|                 |                                |                                       |

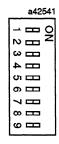
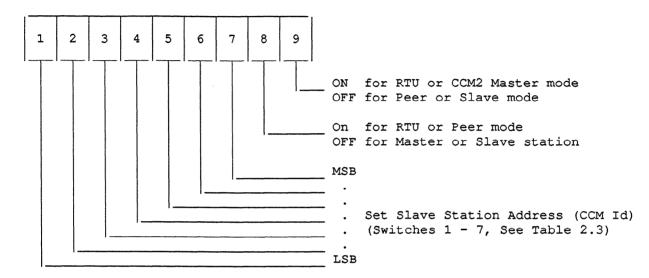




Figure 2-3. CCM, PWB DIP Switch Package

#### **DIP Switch Setting**

**DIP Switch 1:** (SW1) selects the network station address, and master/slave communication protocol.





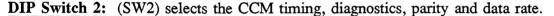
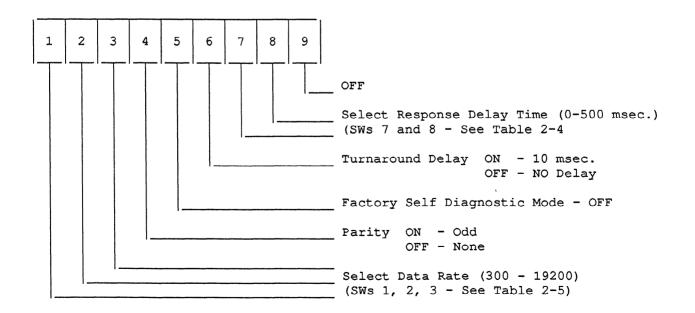




Table 2-2. DIP Switch (SW2) Setting



#### Installing the Series Five CCM

#### GFK-0244

#### **Slave Station Addressing**

The CCM slave station addresses are selected by DIP Switch 1. Switches 1-7 select the slave station when positioned ON (X = ON). Switch 9 is always OFF for slave configuration. Table 2-3 shows the slave station designation with the corresponding switch positions. Valid IDs. for CCM2 are 1-90.

| Binary Weight                         |   |   | 64  | 32 | 16     | 8      | 4 | 2 | 1   |
|---------------------------------------|---|---|-----|----|--------|--------|---|---|-----|
|                                       |   |   | MSB |    |        |        |   |   | LSB |
|                                       | 9 | 8 | 7   | 6  | 5      | 4      | 3 | 2 | 1   |
| Station 1<br>Station 24<br>Station 90 |   |   | x   |    | x<br>x | x<br>x |   | x | х   |

Table 2-3. CCM ID. Slave Station Address (DIP SW 1)

#### **Response Delay Time**

The "Response Delay Time" is the programmable delay time (in addition to the basic delay of the CCM) to avoid communication trouble due to a possible slow response time of the device connected with the CCM.

If the delay time of 500 msec. (only) is selected, the relay contact output (normally used for keying a radio transmitter) will be turned ON for a period of 500 msec. prior to the actual data transmission. Reference Figures 2-4

| Delay Time<br>(msec.) | SW. 7 | SW. 8 |
|-----------------------|-------|-------|
| 0                     | OFF   | OFF   |
| 20                    | ON    | OFF   |
| 100                   | OFF   | ON    |
| 500                   | ON    | ON    |

Table 2-4. Response Delay Time (DIP SW 2)

#### **Data Rate Selection**

One of seven different communication data rates (300 to 19.2 K bits/sec) may be selected by DIP Switch 2. Table 2-5 below lists the selectable data rates with applicable switch settings. Also, refer to Figure 2-4 for the Data rate transfer timing sequence.

| Data Rate<br>(bits/sec) | SW. 1 | SW. 2 | SW. 3 |
|-------------------------|-------|-------|-------|
| 300                     | ON    | OFF   | OFF   |
| 600                     | OFF   | ON    | OFF   |
| 1200                    | ON    | ON    | OFF   |
| 2400                    | OFF   | OFF   | ON    |
| 4800                    | ON    | OFF   | ON    |
| 9600                    | OFF   | ON    | ON    |
| 19200                   | ON    | ON    | ON    |

Table 2-5. Data Rate Selection (DIP SW 2)

## Series Five CCM Timing

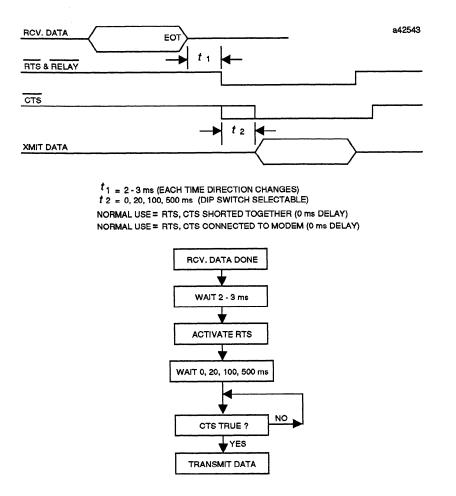



Figure 2-4. Series Five CCM Timing Sequence

## **CCM Front Panel**

The front panel of the CCM module contains the following user items:

- An 8-Segment LED Diagnostic Display
- An ON Line / OFF Line Toggle Switch
- Two Connector Ports (J1) for RS-232C or RS-422), and (J2) for RS-422

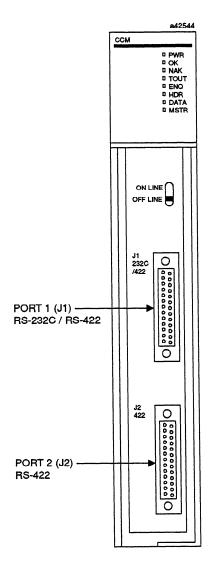



Figure 2-5. Communication Control Module (CCM) Front Panel

#### **LED Description \***

The CCM front panel Light-Emitting-Diode (LED) indicators display when the following conditions occur. These LEDs can be used to determine the cause of many problems in the communication network.

\* The LED definitions are different for RTU mode. (Refer to Table 6-3)

| PWR    | ON<br>OFF | This LED is ON when power is properly supplied by the internal DC-DC converter.<br>It is OFF when no power is applied to the unit.                                                                                                                    |
|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OK     | ON        | <ul> <li>This LED is ON if the module is in normal condition.</li> <li>ROM is OK</li> <li>RAM is OK (Read/Write check)</li> <li>Communications with the CPU is OK</li> <li>It is OFF when any of the above conditions are <u>not</u> true.</li> </ul> |
| NAK    | ON<br>OFF | This LED is ON when a NAK is sent back to the device at the other end of the link.<br>Turns OFF when the next ENQ is received. (OFF for valid)                                                                                                        |
| TOUT   | ON<br>OFF | This LED is ON when a communication Timeout is detected.<br>Turns OFF when the next ENQ is received.                                                                                                                                                  |
| ENQ**  | ON<br>OFF | This LED is ON when an ENQ received with the correct ID.<br>It is OFF when a header starts being sent.                                                                                                                                                |
| HDR**  | ON<br>OFF | This LED comes ON when a header is being sent or received.<br>Otherwise it is OFF.                                                                                                                                                                    |
| DATA** | ON<br>OFF | This LED is ON when data is being sent or received.<br>Otherwise it is OFF.                                                                                                                                                                           |
| MSTR** | ON<br>OFF | This LED is ON when the module is used as a master.<br>It is OFF when the module is used as a slave.                                                                                                                                                  |

#### Table 2-6. LEDs Diagnostic Display (CCM2 Mode)

\*\* During normal operation, these LEDs will blink.

#### **On-Line/Off-Line Selector Switch**

The CCM "ON-Line/OFF-Line" Selector Switch is used to logically disconnect the module from the communication link. This is useful when you wish to prevent the CCM/CPU from receiving new data but do not wish to physically remove the connector. Also, when the selector switch is moved to the OFF-Line position, the CCM will send a "NAK" right away instead of waiting for a timeout period.

| Switch "UP" position   | <b>ON-LINE</b>  |
|------------------------|-----------------|
| Switch "DOWN" position | <b>OFF-LINE</b> |

- **ON-LINE:** The CCM is connected to the data communication bus to the host computer or master station and is able to react to communication instructions from the CPU, or master station.
- **OFF-LINE:** If the CCM is set as a master unit -- the CCM will not react to the communication instructions from the CPU.

If the CCM is set as a slave unit -- the CCM will immediately return a NAK in response to a valid ENQ from the master station.

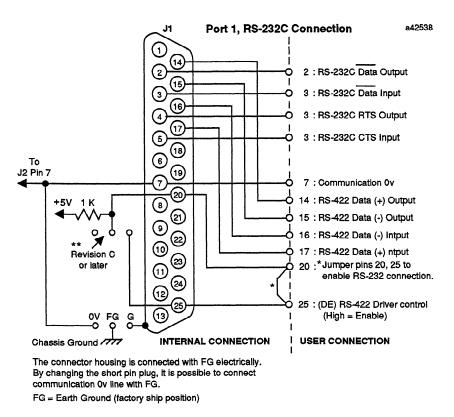
#### **Communication Ports**

The CCM has two physical ports (connectors) located on the front edge of the module. Internally, however, the CCM has only one "logical" port.

The RS-422 port (J2) is located to the bottom of the module, and the RS-232C/RS-422 port (J1) is located at mid-point on the module. Refer to Figure 2-5 for relative port location on the CCM, and Figures 2-6 and 2-7 for configuration of the ports.

- Port J1 is for RS-232C/RS-422 use.
- Port J2 is for RS-422 use.

Each port is isolated from the logic circuits by a photo-coupler and a DC-DC converter.


As shipped, the connector housings for both the RS-232C and RS-422 connectors are connected with Earth Ground (F-G) electrically. F-G is the jumper factory ship position.

#### NOTE

By changing the shorting plug (Jumper) to G-G, it is possible to disconnect the 0V line to Earth Ground. Consult GE Fanuc Automation before moving the jumper to the G-G position.

For more information concerning Port 1, refer to a later section of this chapter "Using Port 1 (J1) for RS-232C Signals".

#### RS-232 (J1) Connection



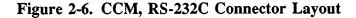



Table 2-7. Port 1 (J1) Pin Definition for RS-232C Connector

| Pin No.          | Definition                                                                           | Function                             |
|------------------|--------------------------------------------------------------------------------------|--------------------------------------|
| 2<br>3<br>4<br>5 | RS-232C Data Output<br>RS-232C Data Input<br>RS-232C RTS Output<br>RS-232C CTS Input |                                      |
| 7<br>14<br>15    | 0V<br>RS-422 Data (+) Output<br>RS-422 Data (-) Output                               |                                      |
| 16<br>17<br>20 * | RS-422 Data (-) Input<br>RS-422 Data (+) Input<br>5V                                 | (5V through 1K ohm pull-up resistor) |
| 25 *             | (DE)                                                                                 | Driver Control (High = ENABLED)      |

\* Pins 20 and 25 must be jumpered together for RS-232C use on Revision A or B modules.

\*\* An internal Jumper must be set for Revision C modules.

GFK-0244

#### **RS-422 (J2) Connection**

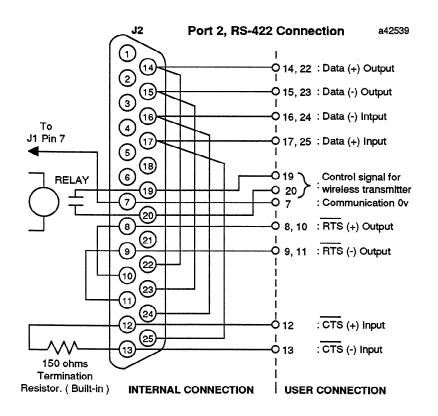
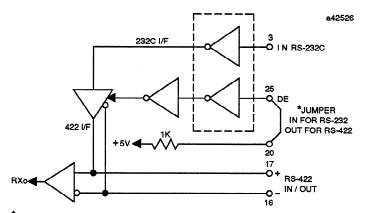



Figure 2-7. CCM, RS-422 Connector Layout


Table 2-8. Port 2 (J2) Pin Definition for RS-422 Connector

| Pin No.                              | Definition                                                                                           | Function                                                       |
|--------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 7<br>8, 10<br>9, 11<br>12<br>13      | $\frac{0V}{RTS} (+) Output$ $\frac{RTS}{CTS} (-) Output$ $\frac{CTS}{CTS} (+) Input$ $CTS (-) Input$ | 150 ohm terminating resistor built-in (between Pins 12 and 13) |
| 14, 22<br>15, 23<br>16, 24<br>17, 25 | Data (+) Output<br>Data (-) Output<br>Data (-) Input<br>Data (+) Input                               |                                                                |
| 19 *<br>20 *                         | TXD Control Signal<br>TDX Control Signal                                                             | (Control signal for wireless transmission communications 0V)   |

\*An internal Jumper connects Pins 19, 20 for Control Signal.

#### Using Port 1 (J1) for RS-232C Signals

To use Port 1 for RS-232C signals, Pins 20 and 25 must be connected together. Refer to the following figures.



\*MODULE REVISIONS A AND B ONLY. REVISION C, OR LATER, CONTAINS AN INTERNAL JUMPER WHICH CAN BE USED FOR THIS PURPOSE.



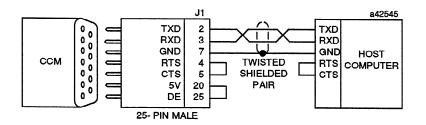



Figure 2-9. Port 1, Connection to Host Computer

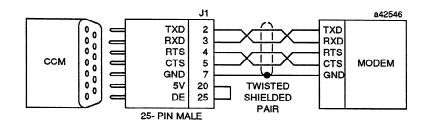



Figure 2-10. Port 1, Connection to Modem

#### **Cable Configuration**

The communication cable assembly presents one of the most common causes of communication failure. For best performance construct the RS-232C and RS-422 cable assembly according to the recommended connector parts and cable specifications. Refer to the appropriate wire table (Port 1, or Port 2) for the specific port wiring information.

#### **Connector Specification**

The recommended mating connector for Port 1 (RS-232C) and Port 2 (RS-422) is the GE Fanuc Automation (GE Fanuc IC655ACC525) 25-pin, solder pot, D-Subminiature connector.

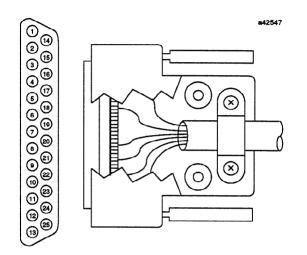



Figure 2-11. Connector Configuration

#### **Cable Specifications**

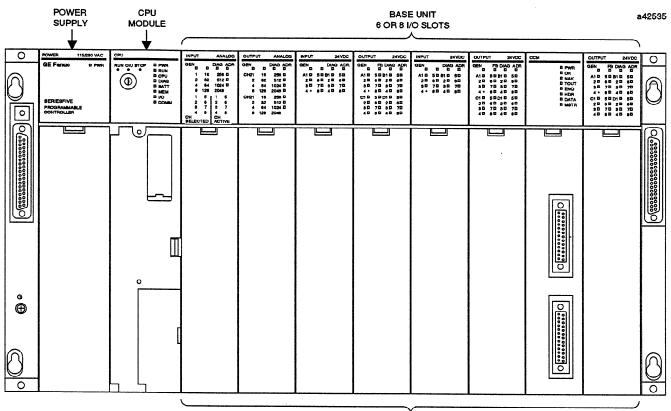
Recommended cable conductor types and fabrication instructions are as follows:

| Table 2-9. Cab | e Specifications |
|----------------|------------------|
|----------------|------------------|

| Length, Maximum: | 50 feet (15 meters) for RS-232C<br>4000 feet (1.2 Km) for RS-422                                                                                                                                                                                                                                 |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 24 AWG Minimum   | (Overall Shield Recommended)<br>For RS-422, use a low capacitance, high quality, twisted pair wire. For example:<br>Belden 9184, 9729, 9804 or 9842                                                                                                                                              |  |  |  |  |
|                  | Twisted pairs <u>must</u> be matched so that both transmit signals make up one twisted pair and both receive signals make up the other twisted pair. If this is ignored, then cross-talk <u>will</u> result from the mis-matching which will affect the performance of the communication system. |  |  |  |  |
|                  | For RS-232, use a high quality "computer" grade cable. Twisted pairs should not be used.                                                                                                                                                                                                         |  |  |  |  |

## **Cable Wiring**

The pin connections are different for the RS-232C and RS-422 connections. Refer to the following figures and wire tables for the specific port (J1, J2) wiring information.


| Port 1, | RS-232C (J1) | Table 2-7 | Figure 2-6 |
|---------|--------------|-----------|------------|
| Port 2, | RS-422 (J2)  | Table 2-8 | Figure 2-7 |

#### Installing the CCM

The CCM plugs directly into the Series Five PLC logic rack with the CPU. The backplane mating connector is a 96 pin male (3 rows, 32 pin/row) connector located uppermost on the back side of the module.

#### Series Five CCM Installation

Carefully position the CCM module into the Series Five CPU rack. Any of the I/O slots in the CPU rack may be used.



MODULES

Figure 2-12. Series Five PLC Rack

### **Communication Network Configurations**

The following pages contain several examples of the many possible communication network configurations using the CCM.

- Multidrop Network
- Using the Internal RS-232C to RS-422 Converter (CCM as Slave)
- CCM as Master Station within a Network
- Multiple CCM Buses (CCM as Master, CCM as Slave) within the same CPU rack
- Complex Networks (Multiple Master and Slave Stations)
- Illegal Networks

#### NOTE

In the figures which follow, the Series Five CPUs built in slave CCM port can be used in some cases instead of the CCM master module as shown.

#### Multidrop Network

In the case of a Multidrop network, all of the stations except one are configured as slaves. The remaining station is configured as a master. A typical network configuration and wiring diagram for the RS-422 multidrop connection (using the IC630CCM390 or IC655CCM590 converter) is shown below.

The converter is required for this application only to provide isolation between the master host computer and the first CCM slave station. If this isolation is not required, the next example may be used, when no additional RS-232 to RS-422 converter is required.

#### NOTE

In general, all the CCMs on a multidrop link must be referenced to the same ground point. If this cannot be guaranteed, the IC630CCM390 or IC655CCM590 converter/repeater box may be required to provide ground isolation between units.

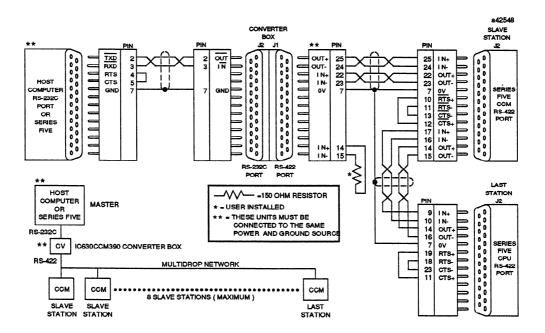



Figure 2-13. RS-422 Network Using the IC630CCM390 or IC655CCM590 Converter Box

#### RS-232C to RS-422 Converter (CCM as Slave)

The internal circuits of the CCM can also be used as a non-isolating RS-232C to RS-422 converter. In this way, a computer which has only a RS-232C output can drive a RS-422 multidrop network without the need for a converter box.

The host (master) computer should be within 50 feet of the slave which is doing the conversion. Also the computer and this slave need to be connected to the same power source and ground. If these conditions cannot be guaranteed, the previous configuration using the IC630CCM390 or IC655CCM590 converter box should be used.

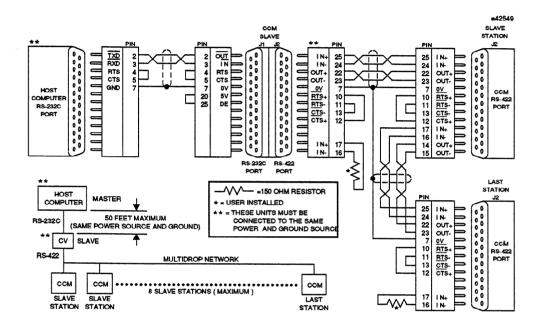
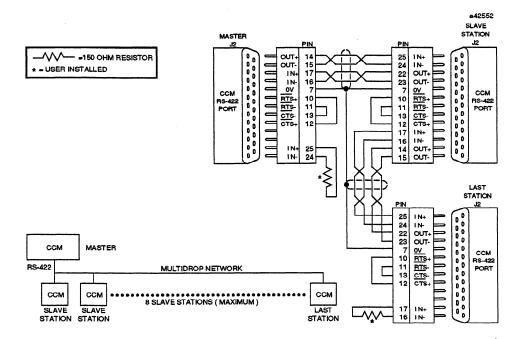
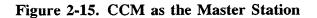





Figure 2-14. Network Using the CCM as a RS-232C to RS-422 Converter

#### **CCM Connected as Master Station**

This example shows the CCM as the master station in a RS-422 configuration.





#### NOTE

In the figures which follow, the Series Five CPUs built in slave CCM port can be used in some cases instead of the CCM master module as shown.

#### **CCM Connected to Other PLCs**

When the multidrop network is used (as in the following example where other PLC types are included), all of the stations except one are configured as slaves. The remaining station is configured as a master. A typical network configuration and wiring diagram showing the Series 90-30 PLC connected is shown below.

#### NOTE

Series One Junior PLCs cannot be used as slaves when using the Series Five CCM master module as the master device.

All interface modules on a multidrop link must be referenced to the same ground point. If this cannot be guaranteed, the IC630CCM390 or IC655CCM590 converter/repeater box may be required to provide ground isolation between units.

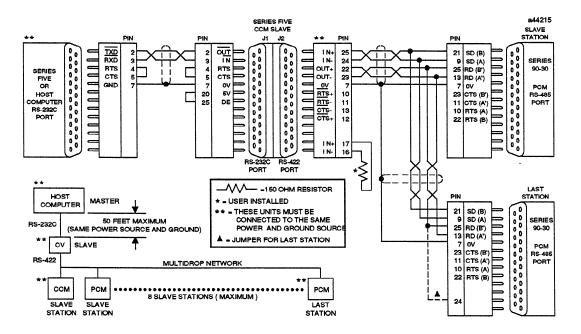



Figure 2-16. CCM Connected to the Series 90-30 PLC

You will notice in the figure above that the Series 90-30 Programmable Coprocessor Module (PCM) connections vary from the Series Five CCM as follows:

- SD (Send Data) and RD (Receive Data) are the same as TXD and RXD (used in the Series Five<sup>®</sup> CCM).
- (A) and (B) are the same as and + (A and B denote outputs, and A' and B' denote inputs)
- Jumper pins 24 and 25 to terminate the Series 90-30 PCM RS-485 the RD input signal.

#### Multiple CCM Buses (CCM as Master, CCM as Slave)

Up to eight CCMs can reside in a single CPU rack. Therefore, up to eight independent CCM networks can originate or pass through a single CPU rack.

The example below shows two CCM modules in the same base. CCM 1 is treated as a slave of the host computer (master of that network) as well as CCM 2 and CCM 3. The CCMs also perform a RS-232C to RS-422 conversion. Refer to previous pages for interconnect wiring.

The second CCM network consists of CCM master #2 with slaves 3, 4, and 5. Since the networks are totally independent, CCM target addresses may be duplicated between networks with no difficulties, and the different networks communicate only through the CPUs user logic.

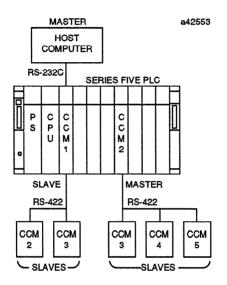



Figure 2-17. RS-232C to RS-422 Converter

#### Installing the Series Five CCM

#### GFK-0244

#### **Complex Networks**

Since the Series Five PLC can have multiple CCM ports (one in the CPU and up to eight additional CCMs), it is possible for several external devices to write data to the CPU. When writing data to the CPU, the user must ensure that undesirable system interactions do not occur as a result of more than one external CCM device writing to the same CPU. Reading the CPU by multiple devices does not create any problems, but writing to the CPU by more than one device is not recommended.

A description of the (Set/Reset and Data Monitoring) functions that allow external devices to write data through a CCM request to the CPU's scratch pad is explained in Chapter 3. They are used by Logicmaster 5 during normal operation. If Logicmaster 5 is not in use, a single external device may use these functions.



Extreme care must be exercised by the user to ensure that one and only one device uses the Set/Reset and Data Monitoring functions. If Logicmaster 5 is operating, no other devices may use these functions. Also it should be noted that Logicmaster 5, when on-line, has the ability to write to most of the tables in the CPU.

The following examples of complex networks show a number of master and slave stations. (M = Master, S = Slave) Within one base unit, multiple CCMs are used as masters in different CCM networks.

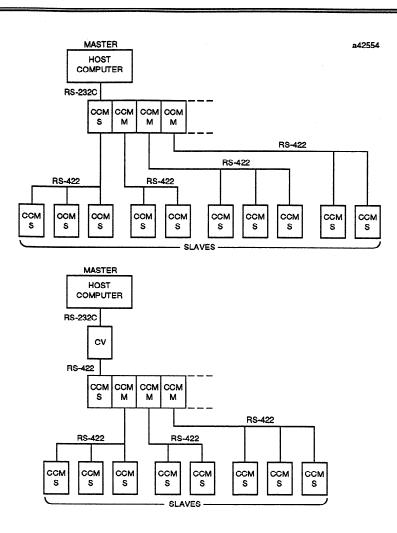



Figure 2-18. Complex Networks (Multiple Masters)

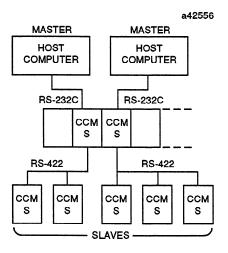



Figure 2-19. Complex Networks (Multiple Hosts)

#### **Non-Practical Networks**

Some examples of non-practical CCM networks are shown below. The first example (Figure 2-shows a network where two or more master stations exist within the network. This becomes a "multi-master" network which cannot be done with CCM compatible devices. The second example (Figure 2-20) is incorrectly wired as a master station and set as a slave.

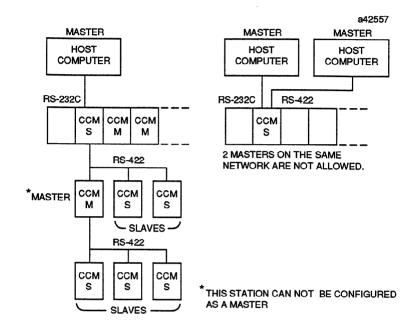



Figure 2-20. Illegal Network (Multi - Master Stations)

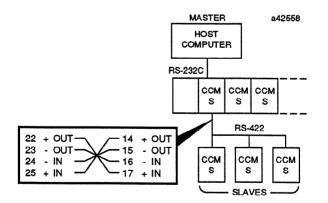




Figure 2-21. Wired as a Master and Set as a Slave

If the network wiring is as shown in figure above, where both stations are set as slaves, the host computer is not able to access the network beyond this wiring point.



Chapter **3** Memory Map

#### GFK-0244

When a reference is programmed and transferred to the CPU, it is entered into a special storage area in the CPU called a table. Each reference group has its own table to keep track of the references used that correspond to the table. The table maintains the status of each reference, keeping track of whether its corresponding bit or group of bits is turned ON or OFF.

# Series Five CCM/CPU Mapping

The Series Five PLC has several areas of memory which provide either special functions, system status information, or error reporting information. These are the special purpose coils, dedicated registers, and the CPU's scratch pad memory. Definitions for these items in memory are provided in the tables on the following pages.

The Communications Control Module (CCM) protocol must be given the start address (shown as reference number below) and a length. The start address plus the length should not go past the end of a table boundary. The CCM for the Series Five interprets length as BYTES, however, WORD lengths are used for the Series Five "WRITE CCM" and "READ CCM" instructions.

| Table Name                                                                      | Reference                                                                                         | CCM Targe<br>Decimal                              | et Address<br>Hexadecimal                                          | CCM Table<br>Memory<br>Type | CCM<br>Ovrd<br>Type          | Data Format                                                                                                                                                |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Registers *                                                                     | R00001 - R16384                                                                                   | 1-16384                                           | 0001-4000H                                                         | 1                           | N/A                          | 2 Bytes/Register                                                                                                                                           |
| I1+ Inputs<br>I2+ Inputs<br>Local Inputs<br>Spec. Inputs *                      | I1+0001 - I1+1024<br>I2+0001 - I2+1024<br>I0001 - I1024<br>I1-0001 - I1-0512                      | 1-128<br>129-256<br>257-384<br>385-448            | 0001-0080H<br>0081-0100H<br>0101-0180H<br>0181-01C0H               | 2 †<br>2<br>2<br>2          | 4 †<br>4<br>4<br>N/A         | 8 Inputs/Byte<br>8 Inputs/Byte<br>8 Inputs/Byte<br>8 Inputs/Byte                                                                                           |
| O1+ Outputs<br>O2+ Outputs<br>Local Outputs<br>Internal Coils<br>Internal Coils | O1+0001 - O1+1024<br>O2+0001 - O2+1024<br>O0001 - O1024<br>O1-0001 - O1-1024<br>O2-0001 - O2-1024 | 1-128<br>129-256<br>257-384<br>385-512<br>513-640 | 0001-0080H<br>0081-0100H<br>0101-0180H<br>0181-0200H<br>0201-0280H | 3 †<br>3<br>3<br>3<br>3     | 5 †<br>5<br>5<br>5<br>5<br>5 | <ul> <li>8 Outputs/Byte</li> <li>8 Outputs/Byte</li> <li>8 Outputs/Byte</li> <li>8 Outputs/Byte</li> <li>8 outputs/Byte</li> <li>8 outputs/Byte</li> </ul> |
| Scratch Pad **                                                                  | 0000 - 0900H                                                                                      | 0-2304                                            | 0000-0900H                                                         | 6                           | N/A                          | 1 Byte/Byte                                                                                                                                                |
| User Logic                                                                      | 0000 - 16383                                                                                      | 0-16383                                           | 0000-3FFFH                                                         | 7                           | N/A                          | 2 Bytes/Word                                                                                                                                               |
| CCM<br>Diagnostic *                                                             | 0000 - 0009                                                                                       | 0-9                                               | 0000-0009H                                                         | 9                           | N/A                          | 1 Byte/Byte                                                                                                                                                |

#### Table 3-1. Series Five CCM/CPU Mapping

\* Refer to the following pages for detailed information concerning the use of these tables.

\*\* Do NOT write to the Scratch Pad without first consulting GE Fanuc Automation.

† Refer to Appendix A for an expanded listing of CCM Memory Types 2 and 4, 3 and 5.

Important operational NOTE on the next page.

3-1

#### NOTE

Even though memory type zero is not inhibited from use with CCM it is not intended to be used. Any Series Six PLC applications which use memory type zero will need to be re-written for the Series Five PLC to use the other memory types.

#### **Register Definition**

Registers R4000 - R4096 are generally used by the Series Five CPU and are not available for general use. Refer to GFK-0122 Series Five PLC User's Manual for a detailed explanation of these registers. Also, registers 3850 through 3999 (when using Genius I/O default values) are reserved by the system and the data to be stored in them has special meaning as listed below.

Some of the registers contain valuable information pertaining to various system errors. For example, when certain system errors or conditions occur, information relative to the error or condition is stored in specified registers, and is available for user intervention. These registers should not be used as general purpose registers for data storage or data manipulation.

| Register Ref. | Definition - Contents of Register                            | Data Format |
|---------------|--------------------------------------------------------------|-------------|
| R3850 - R3999 | Default Genius diagnostics faults (10 per fault)             |             |
| R4000         | OIU Memory Cartridge Data Transfer register                  | Binary      |
| R4001         | OIU Printer register                                         | Binary      |
| R4002         | OIU Printer Port Setup Register                              | Binary      |
| R4003         | OIU Display Register Printer                                 |             |
| R4040         | Reserved for future use                                      |             |
| R4041         | Genius bus scan time (slot 0)                                | Binary      |
| R4042         | Genius bus scan time (slot 1)                                | Binary      |
| R4043         | Genius bus scan time (slot 2)                                | Binary      |
| R4044         | Genius bus scan time (slot 3)                                | Binary      |
| R4045         | Genius bus scan time (slot 4)                                | Binary      |
| R4046         | Genius bus scan time (slot 5)                                | Binary      |
| R4047         | Genius bus scan time (slot 6)                                | Binary      |
| R4048         | Genius bus scan time (slot 7)                                | Binary      |
| R4049         | Genius diag - starting register for fault table (DEF=R3850)  | Binary      |
| R4050         | Genius diag - number of faults to be registered (DEF=max=15) | Binary      |
| R4051         | Genius diagnostics number of actual faults                   | Binary      |
| R4052 - R4056 | Reserved for future use                                      | Binary      |
| R4057         | GENI Slot 0 SBA conflict address/CCM RCV Buffer Pointer      | Binary      |
| R4058         | GENI Slot 1 SBA conflict address/ :                          | Binary      |
| R4059         | GENI Slot 2 SBA conflict address/ :                          | Binary      |
| R4060         | GENI Slot 3 SBA conflict address/ :                          | Binary      |
| R4061         | GENI Slot 4 SBA conflict address/ :                          | Binary      |
| R4062         | GENI Slot 5 SBA conflict address/ :                          | Binary      |
| R4063         | GENI Slot 6 SBA conflict address/ :                          | Binary      |
| R4064         | GENI Slot 7 SBA conflict address/ :                          | Binary      |
| R4065         | OIU Start address of timer register area                     | Binary      |
| R4066         | OIU Number of timers                                         | Binary      |
| R4067         | OIU Start address of counter register area                   | Binary      |
| R4068         | OIU Number of counters                                       | Binary      |

Table 3-2. Reserved Register Definition

# Memory Map

GFK-0244

| Register Ref. | <b>Definition - Contents of Register</b>                                       | Data Format |
|---------------|--------------------------------------------------------------------------------|-------------|
| R4069         | OIU Message pointer for ASCII display                                          | Binary      |
| R4070         | OIU Key code buffer for operator key entry                                     | Binary      |
| R4071         | OIU Message pointer for ASCII display (upper line)                             | Binary      |
| R4072         | OIU Mode register                                                              | Binary      |
| R4073         | Address of math error                                                          |             |
| R4074         | Not used                                                                       | n/a         |
| R4075         | Current ID of module - I/O CONFIG ERROR                                        | Binary      |
| R4076         | Previous ID of module - I/O CONFIG ERROR                                       | Binary      |
| R4077         | Rack and Slot numbers - I/O CONFIG ERROR                                       | BCD         |
| R4078         | Critical system error; (e.g., no memory cartridge) CPU stops                   | BCD         |
| R4079         | Somewhat critical system error; (e.g., blown fuse) CPU continues running.      | BCD         |
| R4080         | System error - not serious; (e.g., battery voltage low) CPU continues running. | BCD         |
| R4081         | Error Code - MODULE ERROR                                                      | BCD         |
| R4082         | Circuit number - MODULE ERROR                                                  | BCD         |
| R4083         | Rack and Slot number - MODULE ERROR                                            | BCD         |
| R4084 - R4085 | Reserved for future use                                                        | n/a         |
| R4086         | Scan counter                                                                   | Binary      |
| R4087         | Seconds - calendar/clock                                                       | BCD         |
| R4088         | Minutes - calendar/clock                                                       | BCD         |
| R4089         | Hour - calendar/clock                                                          | BCD         |
| R4090         | Day of Week - calendar/clock (2)                                               | BCD         |
| R4091         | Day - calendar/clock                                                           | BCD         |
| R4092         | Month - calendar/clock                                                         | BCD         |
| R4093         | Year - calendar/clock                                                          | BCD         |
| R4094         | Last Scan Time (in milliseconds)                                               | Binary      |
| R4095         | Minimum Scan Time (in milliseconds)                                            | Binary      |
| R4096         | Maximum Scan Time (in milliseconds)                                            | Binary      |

Table 3-2. Reserved Register Definition - Continued

#### **Special Inputs Definition**

A group of bits in the internal status table are reserved for use by the Series Five PLC system. These internal inputs are references I1-0001 through I1-0464. When "1" appears in the Table 3-3 (under definition) it indicates a logic 1 (coil ON).

These special Input bits (running consecutively) are designated to be used as follows:

- I1-0001 to I1-0066 System Operation/Status
- I1-0081 to I1-0208 Smart Module Communication Status
- I1-0209 to I1-0464 Genius Communications Status

Inputs not shown in the following table are reserved for internal use by the Series Five CPU only. Refer to GFK-0122, Series Five PLC User's Manual for a detailed explanation of these inputs.

#### System Operation/Status

I1-0001 to I1-0066 are special internal input contacts for system operation.

| Reference | Purpose                         | Definition                                                                 |
|-----------|---------------------------------|----------------------------------------------------------------------------|
| 11-0001   | Initial Reset                   | OFF in stop mode and ON for first scan after going to RUN; OFF thereafter. |
| I1-0002   | Always ON                       | Used as an "always ON" conditional contact.                                |
| If the m  | inimum pulse width is longer th | an the scan time the following clocks are no longer accurate.              |
| I1-0004   | 1 Minute Clock                  | Provides a pulse 30 seconds OFF, 30 seconds ON.                            |
| I1-0005   | 1 Second Clock                  | Provides a pulse .5 Seconds OFF, .5 seconds ON.                            |
| I1-0006   | 100 msec. Clock                 | Provides a pulse 50 msec. OFF, 50 msec. ON.                                |
| I1-0007   | 50 msec. Clock                  | Provides a pulse 24 msec. OFF, 26 msec. ON.                                |
| I1-0008   | Scan time Clock                 | Provides a pulse ON for 1 scan, OFF for 1 scan.                            |
| I1-0009   | Not used                        | - Not available for program use -                                          |
| I1-0010   | Forced RUN                      | 1 = running, CPU keyswitch in the RUN position.                            |
| I1-0011   | OIU RUN                         | 1 = running, CPU keyswitch in the OIU position.                            |
| I1-0015   | OIU STOP                        | 1 = CPU stopped, keyswitch in the OIU position.                            |
| I1-0016   | Stop Relay                      | CPU stopped by keyswitch in STOP position or by external device            |
|           |                                 | (switch in RUN position).                                                  |
| I1-0020   | Suspend I/O                     | 1 = I/O is suspended                                                       |
| I1-0033   | Critical System Error           | 1 = error, CPU goes to STOP mode.                                          |
| I1-0034   | Non-Critical System Error       | 1 = error, CPU remains in RUN mode.                                        |
| I1-0035   | Diagnostic Error                | 1 = error detected                                                         |
| I1-0036   | Battery Not Normal              | 1 = CPU or memory cartridge battery voltage low.                           |
| I1-0037   | Memory Error                    | 1 = latches if a memory cartridge error occurs.                            |
| I1-0038   | I/O Error                       | 1 = 1 atches if I/O bus error is detected.                                 |
| I1-0039   | Communications Error            | 1 = Turned ON by a CCM error. next successful communications will          |
|           |                                 | tum it OFF.                                                                |
| I1-0040   | I/O Configuration Error         | 1 = error detected, I/O configuration has changed since last power-up.     |
| I1-0042   | Watchdog Timeout                | 1 = Watchdog timer has timed out.                                          |
| I1-0043   | Internal Program Error          | 1 = Error (this should never occur.                                        |
| I1-0044   | Internal Math Error             | 1 = Error                                                                  |
| 11-0045   | Smart Module Comm. Error        | 1 = Error                                                                  |

Table 3-3. Special Internal Inputs Definition (Run Time)

#### **Memory Map**

GFK-0244

| Table 3-3. | Special | Internal | Inputs | Definition | (Run | Time) | - Continued |
|------------|---------|----------|--------|------------|------|-------|-------------|
|------------|---------|----------|--------|------------|------|-------|-------------|

| Reference          | Purpose                 | Definition                                                                                      |
|--------------------|-------------------------|-------------------------------------------------------------------------------------------------|
| 11-0065            | I/O Retry Parity Status | 1 = Parity error after specified number of retries $0 = OK$ , no parity error detected          |
| 11-0066            | Non-Critical Rack       | 1 = Non-critical rack, $0 = $ Critical rack (that reported parity error setting I1-0065)        |
| I1-0077            | RD CCM                  | 1 = RD CCM thru CPU is busy; $0 = not$ busy                                                     |
| 11-0078            | RD CCM                  | 1 = RD CCM thru CPU error (see below); 0 =no error                                              |
| I1-0079<br>I1-0080 | WR CCM<br>WR CCM        | 1 = WR CCM thru CPU is busy; 0 = not busy<br>1 = WR CCM thru CPU error (see below); 0 =no error |

Possible causes of the Read or Write CCM thru CPU error, listed in the table above, include the following:

- 1. The port is already in use by OIU.
- 2. The data length of the Read or Write command is less than 1 or greater than 128 bytes.
- 3. Trap mode, which is only legal for the Read CCM function, is specified for the Write CCM function.
- 4. Framing, parity or overrun error detected during read.
- 5. An illegal register is specified as the operand.

#### **Smart Module Communication Status**

I1-0081 to I1-0208 are special purpose contacts for the smart module communication status.

There are two special purpose contact references for each slot in each rack, as shown in the table. Each reference is a status bit for smart module communications status, if a smart module is installed in that slot. Each reference has two possible conditions, 1 (ON) and 0 (OFF).

Status definition for the first reference (e.g., II-81) is: 0 = not executing, 1 = executing. Status definition for the second reference (e.g., II-82) is: 0 = no error, 1 = error.

| Table 3-4. | Special | Internal | Inputs | Definition | (Smart | Module) |
|------------|---------|----------|--------|------------|--------|---------|
|            |         |          |        |            |        |         |

| Slot | Rack 0 | Rack 1 | Rack 2 | Rack 3 | Rack 4 | Rack 5 | Rack 6 | Rack 7 |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0    | I1-81  | I1-97  | I1-113 | I1-129 | I1-145 | I1-161 | I1-177 | I1-193 |
|      | I1-82  | I1-98  | I1-114 | I1-130 | I1-146 | I1-162 | I1-178 | I1-194 |
| 1    | I1-83  | I1-99  | I1-115 | I1-131 | I1-147 | I1-163 | I1-179 | I1-195 |
|      | I1-84  | I1-100 | I1-116 | I1-132 | I1-148 | I1-164 | I1-180 | I1-196 |
| 2    | I1-85  | I1-101 | I1-117 | I1-133 | I1-149 | I1-165 | I1-181 | I1-197 |
|      | I1-86  | I1-102 | I1-118 | I1-134 | I1-150 | I1-166 | I1-182 | I1-198 |
| 3    | I1-87  | I1-103 | I1-119 | I1-135 | I1-151 | I1-167 | I1-183 | I1-199 |
|      | I1-88  | I1-104 | I1-120 | I1-136 | I1-152 | I1-168 | I1-184 | I1-200 |
| 4    | I1-89  | I1-105 | I1-121 | I1-137 | I1-153 | I1-169 | I1-185 | I1-201 |
|      | I1-90  | I1-106 | I1-122 | I1-138 | I1-154 | I1-170 | I1-186 | I1-202 |

| Slot | Rack 0 | Rack 1 | Rack 2 | Rack 3 | Rack 4 | Rack 5 | Rack 6 | Rack 7 |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5    | I1-91  | I1-107 | I1-123 | I1-139 | I1-155 | I1-171 | I1-187 | I1-203 |
|      | I1-92  | I1-108 | I1-124 | I1-140 | I1-156 | I1-172 | I1-188 | I1-204 |
| б    | I1-93  | I1-109 | I1-125 | I1-141 | I1-157 | I1-173 | I1-189 | I1-205 |
|      | I1-94  | I1-110 | I1-126 | I1-142 | I1-158 | I1-174 | I1-190 | I1-206 |
| 7    | I1-95  | I1-111 | I1-127 | I1-143 | I1-159 | I1-175 | I1-191 | I1-207 |
|      | I1-96  | I1-112 | I1-128 | I1-144 | I1-160 | I1-176 | I1-192 | I1-208 |

Table 3-4. Special Internal Inputs Definition (Smart Module) - Continued

# **Genius Communications Status**

Input bits I1-0209 to I1-0464, running consecutively, are designated to show the status of Genius communications.

(0 = Not Communicating, 1 = Communicating)

| Serial Bus |         |         |         |         |         |         |         |         |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Adr        | Slot 0  | Slot 1  | Slot 2  | Slot 3  | Slot 4  | Slot 5  | Slot 6  | Slot 7  |
| 0          | I1-0209 | I1-0241 | I1-0273 | I1-0305 | I1-0337 | I1-0369 | I1-0401 | I1-0433 |
| 1          | I1-0210 | I1-0242 | I1-0274 | I1-0306 | I1-0338 | I1-0370 | I1-0402 | I1-0434 |
| 2<br>3     | I1-0211 | I1-0243 | I1-0275 | I1-0307 | I1-0339 | I1-0371 | I1-0403 | I1-0435 |
| 3          | I1-0212 | I1-0244 | I1-0276 | I1-0308 | I1-0340 | I1-0372 | I1-0404 | I1-0436 |
| 4          | I1-0213 | I1-0245 | I1-0277 | I1-0309 | I1-0341 | I1-0373 | I1-0405 | I1-0437 |
| 5          | I1-0214 | I1-0246 | I1-0278 | I1-0310 | I1-0342 | I1-0374 | I1-0406 | I1-0438 |
| 6          | I1-0215 | I1-0247 | I1-0279 | I1-0311 | I1-0343 | I1-0375 | I1-0407 | I1-0439 |
| 7          | I1-0216 | I1-0248 | I1-0280 | I1-0312 | I1-0344 | I1-0376 | I1-0408 | I1-0440 |
| 8          | I1-0217 | I1-0249 | I1-0281 | I1-0313 | I1-0345 | I1-0377 | I1-0409 | I1-0441 |
| 9          | I1-0218 | I1-0250 | I1-0282 | I1-0314 | I1-0346 | I1-0378 | I1-0410 | I1-0442 |
| 10         | I1-0219 | I1-0251 | I1-0283 | I1-0315 | I1-0347 | I1-0379 | I1-0411 | I1-0443 |
| 11         | I1-0220 | I1-0252 | I1-0284 | I1-0316 | I1-0348 | I1-0380 | I1-0412 | I1-0444 |
| 12         | I1-0221 | I1-0253 | I1-0285 | I1-0317 | I1-0349 | I1-0381 | I1-0413 | I1-0445 |
| 13         | I1-0222 | I1-0254 | I1-0286 | I1-0318 | I1-0350 | I1-0382 | I1-0414 | I1-0446 |
| 14         | I1-0223 | I1-0255 | I1-0287 | I1-0319 | I1-0351 | I1-0383 | I1-0415 | I1-0447 |
| 15         | I1-0224 | I1-0256 | I1-0288 | I1-0320 | I1-0352 | I1-0384 | I1-0416 | I1-0448 |
| 16         | I1-0225 | I1-0257 | I1-0289 | I1-0321 | I1-0353 | I1-0385 | I1-0417 | I1-0449 |
| 17         | I1-0226 | I1-0258 | I1-0290 | I1-0322 | I1-0354 | I1-0386 | I1-0418 | I1-0450 |
| 18         | I1-0227 | I1-0259 | I1-0291 | I1-0323 | I1-0355 | I1-0387 | I1-0419 | I1-0451 |
| 19         | I1-0228 | I1-0260 | I1-0292 | I1-0324 | I1-0356 | I1-0388 | I1-0420 | I1-0452 |
| 20         | I1-0229 | I1-0261 | I1-0293 | I1-0325 | I1-0357 | I1-0389 | I1-0421 | I1-0453 |
| 21         | I1-0230 | I1-0262 | I1-0294 | I1-0326 | I1-0358 | I1-0390 | I1-0422 | I1-0454 |
| 22         | I1-0231 | I1-0263 | I1-0295 | I1-0327 | I1-0359 | I1-0391 | I1-0423 | I1-0455 |
| 23         | I1-0232 | I1-0264 | I1-0296 | I1-0328 | I1-0360 | I1-0392 | I1-0424 | I1-0456 |
| 24         | I1-0233 | I1-0265 | I1-0297 | I1-0329 | I1-0361 | I1-0393 | I1-0425 | I1-0457 |
| 25         | I1-0234 | I1-0266 | I1-0298 | I1-0330 | I1-0362 | I1-0394 | I1-0426 | I1-0458 |
| 26         | I1-0235 | I1-0267 | I1-0299 | I1-0331 | I1-0363 | I1-0395 | I1-0427 | I1-0459 |
| 27         | I1-0236 | I1-0268 | I1-0300 | I1-0332 | I1-0364 | I1-0396 | I1-0428 | I1-0460 |
| 28         | I1-0237 | I1-0269 | I1-0301 | I1-0333 | I1-0365 | I1-0397 | I1-0429 | I1-0461 |
| 29         | I1-0238 | I1-0270 | I1-0302 | I1-0334 | I1-0366 | I1-0398 | I1-0430 | I1-0462 |
| 30         | I1-0239 | I1-0271 | I1-0303 | I1-0335 | I1-0367 | I1-0399 | I1-0431 | I1-0463 |
| 31         | I1-0240 | I1-0272 | I1-0304 | I1-0336 | I1-0368 | I1-0400 | I1-0432 | I1-0464 |

Table 3-5. Special Internal Inputs Definition (Genius)

# **Special Outputs Definition**

A group of bits in the internal output status table are reserved for use with the Series Five Genius bus controller or Operator Interface Unit. These internal outputs are references O2-1000 through O2-1024.

|                                                                                                                       | Written By |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference                                                                                                             | CPU        | User | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 02-1000<br>02-1001<br>02-1002<br>02-1003<br>02-1004<br>02-1005<br>02-1006<br>02-1007<br>02-1008<br>02-1009<br>02-1010 |            |      | ESC key locked (1), unlocked (0); can be set by user program.<br>Buzzer On (1), buzzer Off (0); can be set by user program.<br>Keyclick On (1), keyclick Off (0); can be set by user program.<br>Backlight On (1), backlight Off (0); can be set by user program.<br>Printer Output Start (1), set by program; Ready (0) set by OIU.<br>Transfer Cartridge Identification Start (1), set by user program; Ready (0) set<br>by OIU.<br>Transfer Data from OIU to CPU (1), set by user program; Ready (0) set by<br>OIU.<br>Transfer Data from CPU to OIU (1), set by user program; Ready (0) set by<br>OIU.<br>Clear Memory Cartridge (1), set by user program; Done (0), set by OIU.<br>Printer Error (1), Printer OK (0), set by OIU.                                                                                      |
| 02-1019                                                                                                               | X          |      | SETUP ERROR - If set by the CPU, the data in registers R04049 -R04051 is<br>incorrect. The register data is only checked when the ENABLE Genius<br>DIAGNOSTICS bit (02-1024) transitions from CLEARED to SET, or during<br>power-up if the CPU is in RUN or RUN DISABLED mode and the ENABLE<br>Genius DIAGNOSTICS bit is SET. If a SETUP ERROR exists, the Genius<br>diagnostic routine is not executed.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 02-1020                                                                                                               | x          |      | FAULT TABLE OVERFLOW - If SET by the CPU, this bit indicates that a fault table overflow exists. An overflow occurs if the value of the NUMBER OF FAULTS register (R04051) is greater than the value of the LENGTH OF FAULT TABLE register (R4050). This bit remains set as long as the overflow condition exists. The CPU will CLEAR the bit when there is no overflow condition. If diagnostics are enabled this bit will be updated every sweep when the CPU is in the RUN or RUN DISABLED mode.                                                                                                                                                                                                                                                                                                                         |
| 02-1021                                                                                                               | x          | x    | PULSE TEST - If set by user logic, the CPU will send a PULSE TEST<br>datagram to all logged in devices in the system. The CPU monitors this bit,<br>and if it is SET the CPU will direct a PULSE TEST datagram to each<br>logged-in device in the system (a maximum of one PULSE TEST datagram is<br>sent by each Genius bus controller in the system per CPU sweep.) When the<br>PULSE TEST datagram has been sent all devices in the system, the CPU will<br>CLEAR this bit.<br>If diagnostics are enabled, this bit will be checked every sweep when the CPU<br>is in the RUN or RUN/DISABLED mode, except when the pulse test or clear<br>all faults function is in progress. If the PULSE TEST bit and the CLEAR ALL<br>FAULTS bit are SET at the same time, the clear all faults function will be<br>performed first. |

Table 3-6. Special Internal Output Definition

| Table 3-6. | Special | Internal | Output | Definition | - | Continued |
|------------|---------|----------|--------|------------|---|-----------|
|------------|---------|----------|--------|------------|---|-----------|

|           | Written By |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reference | CPU        | User | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 02-1022   | X          | X    | CLEAR ALL FAULTS - To initiate a Clear All Faults command to all logged<br>in devices in the system, this bit should be set by user logic. The CPU<br>monitors this bit, and if it is SET the CPU will CLEAR the NUMBER OF<br>FAULTS register (R04051). The CPU will then direct a CLEAR ALL<br>FAULTS datagram to each logged-in device in the system (a maximum of one<br>CLEAR ALL FAULTS datagram is sent by each GENI in the system per CPU<br>sweep). When the CLEAR ALL FAULTS datagram has been sent to all<br>devices in the system, the CPU will CLEAR this bit.<br>If diagnostics are enabled, this bit will be checked every sweep when the CPU<br>is in the RUN or RUN DISABLED mode, except when the pulse test or clear<br>all faults function is in progress. If the PULSE TEST bit and the CLEAR ALL<br>FAULTS bit are SET at the same time, the clear all faults function will be<br>performed first. |  |
| 02-1023   |            | х    | REPORT ADD/LOSS OF BLOCK AS FAULT - If this bit is SET by the logic, the addition or loss of a device in the system will be reported as a fault in the fault table, otherwise these conditions are not entered into the fault table. If diagnostics are enabled, this bit will be checked every sweep when the CPU is in the RUN or RUN DISABLED mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 02-1024   |            | X    | ENABLE Genius DIAGNOSTICS - If this bit is SET, then Genius diagnostics<br>will be processed by the CPU. If the bit is CLEARED, then Genius diagnos-<br>tics routine is not executed, and the CPU will not write to internal outputs<br>02-1019 through 02-1022.<br>This bit will be checked every sweep when the CPU is in the RUN or RUN<br>Disabled mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

# **Diagnostic Status Words**

A group of five Diagnostic Status Words can be obtained by using CCM memory type 9, start address 0000, length 10 bytes. For detailed information on status word meanings (00H - 09H) and port error codes (00H - 01H), refer to the following tables.

| Address   | Meaning                                                 |
|-----------|---------------------------------------------------------|
| 00H - 01H | Port error codes (Refer to Table 3-8)                   |
| 02H - 03H | Number of successful conversions on communications port |
| 04H - 05H | Number of aborted conversions on communications port    |
| 06H - 07H | Number of header block retries on communications port   |
| 08H - 09H | Number of data block retries on communications port     |

Table 3-7. Diagnostic Status Words

#### NOTE

The least significant byte shows the result of the most recent communication, the most significant byte shows the result of the next most recent communication.

It is also possible for the host CPU to read the CCM diagnostic status words. A TRANSFER instruction must be used. The TRANSFER instruction should be set up as follows:

R100

Prior to initiating the TRANSFER, the following registers need to be set up as follows.

| R100 | = | See Table 3-8  |
|------|---|----------------|
| R101 | = | 7648 decimal   |
| R102 | = | 32773 decimal  |
| R103 | = | 1998 decimal * |
| R104 | = | 10 decimal     |

 $*(R\#-1) \times 2 = value e.g., for R1000 (1000-1) \times 2 = 1998$ 

| Table | 3-8. | Register | Content |
|-------|------|----------|---------|
|-------|------|----------|---------|

| CCM Slot Number | Register 100 (Decimal) |
|-----------------|------------------------|
| 0               | 32774                  |
| 1               | 32775                  |
| 2               | 32776                  |
| 3               | 32277                  |
| 4               | 32778                  |
| 5               | 32779                  |
| 6               | 32780                  |
| 7               | 32781                  |

The value of R100 depends on the slot number in which the CCM Master module is installed, as shown in the chart. The value in R103 determines the starting register for the data to be stored, and R104 indicates the number of diagnostic words to fetch (10 words in this case). For this example, R1000-R1009 would contain the 10 diagnostic status words.

Of course, any bank of five consecutive registers may be used in conjunction with the TRANSFER instruction.

THE VALUES FOR R100-R102 MUST BE AS SHOWN IN TABLE 3-8, OR YOUR CPU MAY MALFUNCTION.

| Error<br>(dec)        | Code<br>(hex) | Description                                                                                                                                                                                                                                                |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                     | 00            | Successful transfer.                                                                                                                                                                                                                                       |
| 1                     | 01            | A time out occurred on the serial link.                                                                                                                                                                                                                    |
| 2                     | 02            | An external device attempted to write data to a section of the CPU scratch pad that is not allowed.                                                                                                                                                        |
| 1<br>2<br>3<br>4<br>5 | 03            | An external device attempted to read or write a nonexistent I/O point.                                                                                                                                                                                     |
| 4                     | 04            | An external device attempted to access more data than is available in a particular memory type.                                                                                                                                                            |
| 5                     | 05            | An external device attempted to read or write an odd number of bytes to Timer/Counter or register memory, user-logic memory, or the diagnostic status words.                                                                                               |
| 6                     | 06            | An external device attempted to read or write one or more nonexistent Timer/Counter accumulated or register values.                                                                                                                                        |
| 7                     | 07            | An external device specified the transfer of zero data bytes.                                                                                                                                                                                              |
| 8                     | 08            | An external device attempted to write to protected memory. This will be the error code if any attempt<br>is made to Write to user-logic memory while the CPU is in the RUN mode. This is also returned if<br>the password is active and the CPU is locked. |
| 9                     | 09            | An external device attempted to transfer data to or from an invalid memory type.                                                                                                                                                                           |
| 10                    | 0A            | An external device attempted to read or write one or more nonexistent diagnostic status words.                                                                                                                                                             |
| 11                    | 0B            | An external device attempted to transfer data beginning at an invalid user-logic memory or scratch pad address.                                                                                                                                            |
| 12                    | 0C            | Serial communication was aborted after a data block transfer was retried three times.                                                                                                                                                                      |
| 13                    | 0D            | Serial communication was aborted after a header transfer was retried three times.                                                                                                                                                                          |
| 15                    | 0F            | Unit address in ENQUIRY was correct but does not agree with unit address specified in the HEADER block.                                                                                                                                                    |
| 20                    | 14            | One or more of the following errors occurred during a data block transfer:<br>A. An invalid STX character was received,                                                                                                                                    |
| 1                     |               | B. An invalid ETB character was received,                                                                                                                                                                                                                  |
|                       |               | C. An invalid ETX character was received,                                                                                                                                                                                                                  |
|                       |               | D. An invalid LRC character was received,                                                                                                                                                                                                                  |
|                       |               | E. A parity, framing, or overrun error occurred.                                                                                                                                                                                                           |
| 21                    | 15            | The CCM expected to receive an EOT character from an external device and did not receive it.                                                                                                                                                               |
| 22                    | 16            | The CCM expected to receive an ACK or NAK character and did not receive it.                                                                                                                                                                                |
| $\tilde{26}$          | 10<br>1A      | A time out occurred during an attempt to transmit on a port due to CTS being in an inactive state too                                                                                                                                                      |
|                       |               | long.                                                                                                                                                                                                                                                      |
| 29                    | 1D            | An error occurred when data was being transferred.                                                                                                                                                                                                         |
| 30                    | 1E            | A parity, framing, or overrun error occurred during a serial data block transfer.                                                                                                                                                                          |

Table 3-9. Port Error Codes Description

# Series Five Scratch Pad

The Scratch Pad stores information about the current Series Five CPU system status. This information is provided in abbreviated and preliminary form for illustration only. If additional information is required contact GE Fanuc Automation.

# CAUTION

Extreme care must be used when writing to any Scratch Pad location. It is strongly recommended that you consult GE Fanuc Field Service before doing this.

| Address | Read/Write | Stored in<br>Memory<br>Cartridge | Preliminary Description                                                                                                                                                                                                                                                        |  |
|---------|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00H     | R/W        | NO                               | Run/Stop command area                                                                                                                                                                                                                                                          |  |
|         |            |                                  | Mode<br>RUNWrite<br>01HRead<br>03HRUN/DISABLE81H83HSTOP80H80H                                                                                                                                                                                                                  |  |
| 01H     | R          | NO                               | Run/Stop status area<br>RUN = 03H<br>RUN disabled = 83H<br>STOP = 80H                                                                                                                                                                                                          |  |
| 02H     | R          | NO                               | Password status, 00H = unlocked, 01H = locked                                                                                                                                                                                                                                  |  |
| 05H     | R          | NO                               | Memory cartridge type (same as 102H)<br>Bit 7 - unused<br>Bit 6 - unused<br>Bit 5 - 1 = user logic, 0 = system<br>Bit 4,3 - 11 = CMOS RAM, 10 = UVPROM, 01 = EEPROM<br>Bit 2,1,0 - 001 = 8K, 010 = 16K, 011 = 32K, 100 = 64K                                                   |  |
| 06H     | R          | NO                               | CPU status flags<br>Bit 7 - keyswitch, 1 = stop, 0 = run<br>Bit 6,5 - 11<br>Bit 4 - 0 = write protected, 1 = write enabled<br>Bit 3 - 1<br>Bit 2 - keyswitch, 1 = OIU, 0 = not OIU<br>Bit 1,0 - 00 = 16K registers, 10 = 4K registers                                          |  |
| 10H     | R          | NO                               | CPU error status (same as 473H - 476H)<br>Bit 7 - I/O config error<br>Bit 6 - not memory cartridge<br>Bit 5 - I/O bus error<br>Bit 4 - Genius setup error<br>Bit 3 - I/O parity error<br>Bit 2 - grammar error<br>Bit 1 - gate array parity error<br>Bit 0 - compilation error |  |

Table 3-10. Series Five Scratch Pad Definition

| <b>Table 3-10.</b> Set | eries Five | Scratch Pad | Definition | - Continued |
|------------------------|------------|-------------|------------|-------------|
|------------------------|------------|-------------|------------|-------------|

| Address | Read/Write | Stored in<br>Memory<br>Cartridge | Preliminary Description                                                                                                                                                                                                                                                                                           |  |
|---------|------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 11H     | R          | NO                               | CPU error status<br>Bit 7 - I/O address assigned past end of table<br>Bit 6 - I/O address conflict<br>Bit 5 - I/O module withdrawn<br>Bit 4-2 - unused<br>Bit 1 - memory cartridge has only data registers<br>Bit 0 - memory cartridge has only system parameters                                                 |  |
| 12H     | R          | NO                               | CPU error status<br>Bit 7 - not CPU battery<br>Bit 6 - not memory cartridge battery<br>Bit 5 - CPU battery voltage is low<br>Bit 4 - memory cartridge battery voltage is low<br>Bit 3 - I/O error (blown fuse, terminal strip loose, etc)<br>Bit 2 - Watchdog timeout<br>Bit 1 - internal F20<br>Bit 0 - not used |  |
| 13H     | R          | NO                               | CPU error status<br>Bits 7 - 0 unused                                                                                                                                                                                                                                                                             |  |
| 14H     | R          | NO                               | Microcode revision number                                                                                                                                                                                                                                                                                         |  |
| 15H     | R          | NO                               | Firmware revision number                                                                                                                                                                                                                                                                                          |  |
| 16H     | R          | YES                              | CCM address/parity<br>Bits 7 - 1 = no parity after next power-up, $0 = \text{odd parity}$<br>Parity will not actually change until the next CPU power-up or reset.                                                                                                                                                |  |
| 75H-B3H | R          | NO                               | Error detail for 10H - 13H<br>75H has error address or rack/slot # of 10H bit 1 error, etc<br>B3H has error address or rack/slot # of 13H bit 7 error                                                                                                                                                             |  |
| C0H-C7H | R/W        | YES                              | File name of the program in the memory cartridge                                                                                                                                                                                                                                                                  |  |
| 101H    | R          | NO                               | CPU/CCM data rate type (same as 05H)<br>Bits 7-3 - unused<br>Bits 2,1,0 - 000 = 300 Bps, 010 = 1200 Bps,<br>101 = 9600 Bps, 110 = 19200 Bps                                                                                                                                                                       |  |
| 102H    | R          | NO                               | Memory cartridge type (same as 05H)                                                                                                                                                                                                                                                                               |  |
| 103H    | R          | NO                               | CPU keyswitch (use 06H instead)<br>Bits 7-3 - unused<br>Bits 2,1,0 - 001 = run, 010 - OIU, 100 = stop                                                                                                                                                                                                             |  |

# Memory Map

GFK-0244

| Table 3-10. | Series Five | Scratch Pad | Definition | - Continued |
|-------------|-------------|-------------|------------|-------------|
|-------------|-------------|-------------|------------|-------------|

| Address        | Read/Write | Stored in<br>Memory<br>Cartridge | Preliminary Description                                                                                                                                                                                                                                                                           |  |
|----------------|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10BH-<br>162H  | R          | YES                              | I/O config loaded from memory cartridge 10B = Id for rack 0 10C = Id for power supply in rack 0 10D = Id for CPU or local I/O I/F in rack 0 10E = Id for module in slot 0 : : 162 = Id code for module in rack 7, slot 7 Loads from memory cartridge on power-up, CPU init forces all bytes to 0. |  |
| 163H-1BAH      | R          | NO                               | I/O configuration of the actual installed items -same format as 10B - 162H.<br>On power-up, or CPU init, CPU reads the real I/O and loads this area.<br>CPU compares this area with 10B-162 area for I/O configuration check.                                                                     |  |
| 1BBH-212H      | R          | NO                               | I/O module diagnostic error codes per slot, same addressing as 10B-162H.<br>CPU loads this area on power-up, after CPU init, and dynamically during execution.                                                                                                                                    |  |
| 213H           | R/W        | NO                               | CPU initialize request (write 0A5H) CAUTION                                                                                                                                                                                                                                                       |  |
| 214H           | R/W        | NO                               | I/O configuration command<br>Write 5AH = create new I/O configuration<br>Write A5H = OK to run with memory cartridge configuration even thou<br>real I/O is different                                                                                                                             |  |
| 215H           | R/W        | NO                               | CPU mode change request 1 causes listed function<br>Bit 7 - "N" Scans (216H, 217H must be setup first)<br>Bit 6 - Scan Stop<br>Bit 5 - Restart scan<br>Bit 4 - Break (requires 216H, 217H setup first)<br>Bit 3 - 1 step<br>Bit 2 - Test<br>Bit 1 - Stop<br>Bit 0 - Run                           |  |
| 216H &<br>217H | R/W        | NO                               | Refer to 215H break address, or number of scans to execute.                                                                                                                                                                                                                                       |  |
| 218H           |            |                                  | Bits 7 - 5 unused<br>Bit 4 - 1 = decimal display, 0 = octal display (non-S5)<br>Bits 3,2 - 00 = both I/O, 01 = I only, 10 = O only<br>Bits 1,0 - 00 = on/off status, 10 = I/O address,<br>Bit 1,0 - 00 = 16K registers, 10 = 4K registers<br>11 = Register address (non Series Five)              |  |
| 219H &<br>21CH | R/W        | NO                               | Password registration area                                                                                                                                                                                                                                                                        |  |

| Table 3-10. | Series | Five | Scratch | Pad | Definition | - Continued |
|-------------|--------|------|---------|-----|------------|-------------|
|-------------|--------|------|---------|-----|------------|-------------|

| Address         | Read/Write | Stored in<br>Memory<br>Cartridge | Preliminary Description                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 240H            | R/W        | YES                              | I/O parity retry counter                                                                                                                                                                                                                                                                                                                       |
| 241H            | R/W        | YES                              | Critical Bases 1 = Non-Critical                                                                                                                                                                                                                                                                                                                |
| 256H to<br>2B5H | R/W        | YES                              | Genius setup area<br>256H = Slot # 0<br>257H = Serial bus address<br>258H = Start status table address - 1st byte<br>259H = Start status table address - 2nd byte<br>25AH = Number of Inputs<br>25BH = Number of Outputs<br>25CH = Data Rate<br>25DH = Unused<br>25EH-261H = 4 bytes of output control, 1 bit/node<br>Repeat for 7 more slots. |
| 262H to<br>26DH |            |                                  | 262H = Slot # 1                                                                                                                                                                                                                                                                                                                                |
| 26EH to<br>279H |            |                                  | 26EH = Slot # 2                                                                                                                                                                                                                                                                                                                                |
| 27AH to<br>285H |            |                                  | 27AH = Slot # 3                                                                                                                                                                                                                                                                                                                                |
| 286H to<br>291H |            |                                  | 286H = Slot # 4                                                                                                                                                                                                                                                                                                                                |
| 292H to<br>29DH |            |                                  | 292H = Slot # 5                                                                                                                                                                                                                                                                                                                                |
| 29EH to<br>2A9H |            |                                  | 29EH = Slot # 6                                                                                                                                                                                                                                                                                                                                |
| 2AAH to<br>2B5H |            |                                  | 2AAH = Slot # 7                                                                                                                                                                                                                                                                                                                                |
| 2B6H            | R/W        | YES                              | Watchdog timer value<br>Copied from memory cartridge on power-up, range is 20 to 999 msec.,<br>default is 200. 64H data = 200 msec. Data is in 2 msec. increments.                                                                                                                                                                             |
| 2B8H to<br>1BEH | R/W        | NO                               | Calendar clock setting area<br>2B8H = Seconds<br>2B9H = Minutes<br>2BAH = Hours<br>2BBH = Day of week, 0 = Sunday, 1 = Monday, etc.<br>2BCH = Day<br>2BDH = Month<br>2BEH = Year<br>All of the above values must be written together.                                                                                                          |
| 4FEH            | R/W        | YES                              | I/O configuration selection - C3H = check, else no check                                                                                                                                                                                                                                                                                       |

# Memory Map

GFK-0244

| Table 3-10. | Series | Five <b>S</b> | Scratch | Pad | Definition | · - C | Continued |
|-------------|--------|---------------|---------|-----|------------|-------|-----------|
|-------------|--------|---------------|---------|-----|------------|-------|-----------|

| Address         | Read/Write | Stored in<br>Memory<br>Cartridge | Preliminary Description                                                                                                                                 |
|-----------------|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 500H to<br>5FFH | R          | YES                              | I/O map - start I/O address for each slot<br>500H = rack 0, slot 0<br>:<br>5FFH = rack 7, slot 7<br>LSB = 1 means manual address, 0 = automatic address |

# Module ID. and Error Codes

The Series Five CPU scratch pad bytes (1BBH - 212H) are used for the module ID. and error checking. They are filled by the CPU after performing its error checking routine. The following table defines some of the errors that may be detected by the CPU.

All modules use the same error codes in common as follows:

| 80H | = | I/O configuration error         |
|-----|---|---------------------------------|
| 81H | = | Module withdrawn from this slot |
| 83H | = | I/O bus error                   |
| 85H | Ξ | I/O address range error         |
| 86H | = | I/O address duplication error   |
|     |   | _                               |

| Table 3-11. Internal Module ID. and Error Code | Table 3-11. | Internal | Module | ID. and | Error | Codes |
|------------------------------------------------|-------------|----------|--------|---------|-------|-------|
|------------------------------------------------|-------------|----------|--------|---------|-------|-------|

| Cat. No. | Module<br>ID. | Additional Error Codes (In addition to those listed above) |
|----------|---------------|------------------------------------------------------------|
| CPU500   | 00H           |                                                            |
| PRG500   | 01H           |                                                            |
| PWR501   | 02H           |                                                            |
| PWR500   | 0CH           |                                                            |
| PWR514   | 0DH           |                                                            |
| CHS508   | 04H           |                                                            |
| CHS518   | 05H           |                                                            |
| CHS506   | 0AH           |                                                            |
| CHS516   | OBH           |                                                            |
| BEM500   | 08H           |                                                            |
| BEM510   | 07H           |                                                            |
| BEM511   | 06H           |                                                            |
| BEM530   | 09H           | 01H = S3 I/O abnormal                                      |
|          |               | 02H = S3 Power supply off                                  |
| MDL502   | 2BH           | 01H = terminal block loose                                 |
| MDL503   | 33H           |                                                            |
| MDL512   | 28H           | 01H = terminal block loose                                 |
| MDL501   | 45H           | 01H = terminal block loose                                 |
| MDL511   | 41H           | 01H = terminal block loose                                 |
| MDL522   | 2AH           | 01H = terminal block loose                                 |
| MDL521   | 40H           | 01H = terminal block loose                                 |
| MDL525   | 40H           |                                                            |
| MDL524   | 17H           | (32 Inputs)                                                |
| MDL524   | 13H           | (16 Inputs)                                                |

| Cat. No. | Module<br>ID. | Additional Error Codes (In addition to those listed above) |
|----------|---------------|------------------------------------------------------------|
| MDL527   | 12H           |                                                            |
| MDL526   | 2AH           |                                                            |
| MDL533   | 37H           |                                                            |
| MDL556   | 29H           | 01H = terminal block loose                                 |
|          |               | 02H = blown fuse                                           |
| MDL552   | 2EH           | 01H = terminal block loose<br>02H = blown fuse             |
|          |               | 04H = no external power                                    |
| MDL532   | 29H           |                                                            |
| MDL551   | 47H           | 01H = terminal block loose                                 |
|          |               | 02H = blown fuse                                           |
|          |               | 04H = no external power                                    |
| MDL552   | 2EH           |                                                            |
| MDL555   | 46H           |                                                            |
| MDL531   | 47H           | 01H = terminal block loose                                 |
|          |               | 04H = no external power                                    |
| MDL542   | 2CH           | 01H = terminal block loose                                 |
|          |               | 02H = blown fuse                                           |
| MDL541   | 42H           | 01H = terminal block loose                                 |
|          |               | 02H = blown fuse                                           |
| MDL553   | 3AH           |                                                            |
| MDL556   | 29H           |                                                            |
| MDL557   | 1DH           |                                                            |
| MDL577   | 2CH           |                                                            |
| MDL575   | 42H           |                                                            |
| MDL576   | 43H           |                                                            |
| MDL586   | 48H           |                                                            |
| MDL581   | 2DH           | 01H = terminal block loose                                 |
|          |               | 04H = no external power                                    |
| MDL580   | 44H           | 01H = terminal block loose                                 |
|          |               | 02H = blown fuse                                           |
|          |               | 04H = no external power                                    |
| MDL593   | 3BH           |                                                            |
| APU510   | 30H           | 01H = terminal block loose<br>04H = no external power      |
| APU500   | 34H           |                                                            |
| APU510   | 30H           |                                                            |
| APU520   | 31H           |                                                            |
| APU521   | 32H           |                                                            |
| ALG516   | 35H           | 01H = terminal block loose<br>02H = blown fuse             |
| APU517   | 3FH           |                                                            |
| APU518   | 3DH           |                                                            |
| APU519   | 3CH           |                                                            |
| ALG 566  | 36H           | 01H = terminal block loose<br>02H = blown fuse             |
| ALG568   | 39H           |                                                            |
| CCM500   | 38H           |                                                            |
|          | L             |                                                            |

# Table 3-11. Internal Module ID. and Error Codes - Continued

#### **Memory Map**

#### GFK-0244

#### Functions That Write Data to CPU Memories

Since the Series Five PLC can have multiple CCM ports (one in the CPU and up to eight additional CCMs), it is possible for several external devices to write data to the CPU. When writing data to the CPU, the user must ensure that undesirable system interactions do not occur as a result of more than one external CCM device writing to the same CPU. Reading the CPU by multiple devices does not create any problems, but writing to the CPU by more than one device is not recommended.

The following pages describe two new functions (Set/Reset and Data Monitoring) that allow external devices to write data through a CCM request to the CPU's scratch pad. They are used by Logicmaster 5 during normal operation. If Logicmaster 5 is not in use, a single external device may use these functions.



Extreme care must be exercised by the user to ensure that one and only one device uses the Set/Reset and Data Monitoring functions. If Logicmaster 5 is operating, no other devices may use these functions.

#### Set/Reset Bit (Through Scratch Pad) Function

When forcing I/O points on or off through a normal serial interface, there is the possibility that other bits within the same byte may accidentally be turned on through interaction with user logic. The Series Five PLC prevents this from happening through use of the Bit Set/Reset function which uses a specific area of the scratch pad as a buffer. This function allows the forcing on or off of one or more bits in a single byte of a discrete Input or Output status table.

Data required for this function is written to a buffer in the scratch pad by a write request from a CCM device. Five consecutive bytes are required for this function. The location of these bytes in the scratch pad, the data required for the CCM request, and the return data after the function is initialized is shown below.

| Scratch Pad<br>Address (Hex) | Data at Request         | Return (Same Location)  |  |
|------------------------------|-------------------------|-------------------------|--|
| 600                          | Function Code           | Complete Code (0)       |  |
| 601                          | CCM Memory Type + 30H   | OK (88H) or Error (FCH) |  |
| 602                          | Reference Address (LSB) | Error Code (LSB)        |  |
| 603                          | Reference Address (MSB) | Error Code (MSB)        |  |
| 604                          | Bit Mask                | Not Used                |  |

The function code for the first byte can be either 44H for bit set, 45H for bit reset, or 52H for a toggle. The CCM memory type for this byte can be 32H (input tables), 33H (output tables), 34H (input override tables), or 35H (output override tables). The reference address can be the values 1 to 180H for memory types 32H and 34H, or the values 1 to 280H for memory types 33H and 35H. The reference address identifies the byte in which the desired bit or bits are located. The mask identifies which bits in the byte are to be affected.

#### Force ON Function

If a bit is to be turned on, a corresponding bit in the mask is set to a 1. To turn on more than one bit, set all of the corresponding bits to a 1. Any bits that are not to be turned on, should be 0. The resultant mask byte can be used in an OR operation with the status byte to provide the requested status. For example, to turn on I0097 and I0103 with a CCM master device, the following data must be written to the scratch pad buffer:

| Scratch Pad<br>Address (Hex) | At Request     |  |  |
|------------------------------|----------------|--|--|
| 600                          | 44 (Hex)       |  |  |
| 601                          | 32 (Hex)       |  |  |
| 602                          | 0D (Hex)       |  |  |
| 603                          | 01 (Hex)       |  |  |
| 604                          | 01000001 (41H) |  |  |

In the example above, the memory type is 02 (input tables), with the byte including the target bit being the 0D byte into the local input table (offset =100H).

#### **Force OFF Function**

If a bit is to be turned off, a corresponding bit in the mask is set to a 0. To turn off more than one bit, set all of the corresponding bits to be turned off to a 0. Any bits that are not to be turned off, should be a 1. The resultant mask byte can be used in an AND operation with the status byte to provide the requested status. For example, to turn off 00050 and 00053 with Logicmaster 5, the following data must be written to the scratch pad buffer:

| Scratch Pad<br>Address (Hex) | At Request     |
|------------------------------|----------------|
| 600                          | 45 (Hex)       |
| 601                          | 33 (Hex)       |
| 602                          | 07 (Hex)       |
| 603                          | 01 (Hex)       |
| 604                          | 11101101 (EDH) |
|                              |                |

#### **Executing the Bit Set/Reset Function**

The procedure for initiating and executing the Bit Set/Reset function is described below.

- Initialize the Force Bit Buffer in the scratch pad as described previously.
- The Series Five CPU detects a request of 44H (Bit Set) or 45H (Bit Reset) and performs the function in the same CPU sweep in which the request was detected.
- If no error is detected, the Series Five CPU sets byte 2 (location 601H) in the scratch pad buffer to an "OK" code (88H).
- If an error is detected, the CPU sets byte 2 to an error code (FCH), and writes the error code values into bytes 3 (LSB) and bytes 4 (MSB).
- When the operation is complete, the CPU sets byte 1 (Complete Code) to a 0.

# Data Monitoring Through a CCM Device

A function is available which allows fast monitoring of a specified number of items (from 1 to 88 items) in a single CCM communication, even if the items are widely distributed in the CCM target memory space. These items (coils, contacts, etc.) can be located anywhere that is accessible to the external CCM device. There are no qualifiers, such as being in sequential order.

The addresses of the items to be monitored are written to a consecutive area of scratch pad memory called the Request Buffer, and the values of those items are written by the CPU to a like number of locations in another area of scratch pad memory called the Return Buffer. The location of these buffers in scratch pad memory and the data contained in the buffers is as follows:

| Scratch Pad<br>Address (Hex) | Request Buffer        | Scratch Pad<br>Address (Hex) | Return Buffer       |
|------------------------------|-----------------------|------------------------------|---------------------|
| 610                          | Function code         |                              |                     |
| 611                          | Number of items       | 752                          | OK/Error Code       |
| 612                          | Item 1 Address (LSB)  | 753                          | Item 1 Value (LSB)  |
| 613                          | Item 1 Address (MSB)  | 754                          | Item 1 (1) (MSB)    |
| 614                          | Item 1 Address (LSB)  | 755                          | Item 2 Value (LSB)  |
| 615                          | Item 1 Address (MSB)  | 756                          | Item 2 (1) (MSB)    |
| •                            |                       |                              |                     |
| •                            |                       | •                            |                     |
| •                            |                       | •                            |                     |
| 6BE                          | Item 87 Address (LSB) | 801                          | Item 87 Value (LSB) |
| 6BF                          | Item 87 Address (MSB) | 802                          | Item 87 (1) (MSB)   |
| 6C0                          | Item 88 Address (LSB) | 803                          | Item 88 Value (LSB) |
| 6C1                          | Item 88 Address (MSB) | 804                          | Item 88 (1) (MSB)   |
|                              | WRITE ONLY            | _                            | READ ONLY           |

(1) Override table value if an I/O table, or MSB if a register value.

#### **Request Buffer**

The data required to be entered in the Request Buffer is:

- The function code value must be 42 (Hexadecimal) to request this function.
- The number of items that can be requested to be monitored is from 1 to 88 (decimal).
- The reference address for each of the requested items must be entered in the remaining buffer locations. Each reference address requires two locations, the first is the Least Significant Byte of the reference address, the second is the Most Significant Byte of the reference address. The valid entries for the addresses are as follows:

| Reference<br>Address | Byte Address<br>MSB/LSB | Reference<br>Address | Byte Address<br>MSB/LSB |
|----------------------|-------------------------|----------------------|-------------------------|
| R1                   | 4001H                   | O1+0001              | C001H                   |
| R3FFFH               | 7FFFH                   | O1+1024              | C080H                   |
| I1+0001              | 8001H                   | O2+0001              | C081H                   |
| I1+1024              | 8080H                   | O2+1024              | C100H                   |
| I2+0001              | 8081H                   | O0001                | C101H                   |
| I2+1024              | 8100H                   | 01024                | C180H                   |
| I0001                | 8101H                   | 01-0001              | C181H                   |
| I1024                | 8180H                   | 01-1024              | C200H                   |
|                      |                         | O2-0001              | C201H                   |
| Scratch Pad          | OH                      | O2-1024              | C280H                   |

 Table 3-12. Request Buffer Entries

#### **Return Buffer**

The return buffer will contain the values of the items specified in the request buffer after the function has been executed. The first location will contain the "OK" code 88H if no errors are detected during execution of the function, or if an error is detected, the value FCH will be written to the first location. The data values that will be written to the return buffer can take two forms:

- 1. Register Data a word value with the Least Significant Byte in the lower byte and the Most Significant Byte in the higher byte.
- 2. Discrete data The lower byte will contain a byte value of the discrete byte containing the requested address. The high byte will contain the byte value of the override byte containing the requested address.

#### **Executing the Data Monitoring Function**

The procedure for initiating and executing the Data Monitoring function is described below.

- The CCM master device initializes the Request Buffer as previously described. The function code (42H) must be the last buffer entry to be initialized.
- The Series Five CPU checks for a request of 42H every sweep and begins getting the data and writing it to the scratch pad Return Buffer. The update of the Return Buffer is completed within the same sweep after the logic solution to ensure data integrity.
- If no error is detected, the CPU sets scratch pad location 752H in the Return Buffer to 88H (OK code).
- If an error is detected the CPU sets scratch pad location 752H in the return buffer to an error code (FCH).
- When the operation is complete, the CPU sets byte 1 (Function Code) in the Request Buffer to a 0.
- For the next request of the same data, the master device only needs to change the Function Code from OH to 42H. The Series Five CPU updates the data once per request. If different data is required, the Request Buffer must be loaded with the new addresses.

#### **Memory Map**

#### GFK-0244

#### **Example of Data Monitor Request Function**

The following examples show the data contained in the two scratch pad buffers at the time of the function request and at completion. The example request is for references R12 and I1+1024.

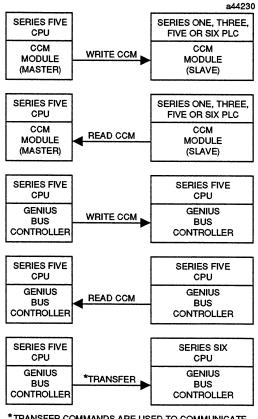
#### Content of buffer at function request:

| Ref.    | Scratch Pad<br>Address (Hex) | <b>Request Buffer</b> | Scratch Pad<br>Address (Hex) | <b>Return Buffer</b> |
|---------|------------------------------|-----------------------|------------------------------|----------------------|
|         | 610                          | 42H                   |                              |                      |
|         | 611                          | 02H                   | 752                          | 88H                  |
| R12     | 612                          | OCH                   | 753                          | 0                    |
|         | 613                          | 40H                   | 754                          | 0                    |
| I1+1024 | 614                          | 80H                   | 755                          | 0                    |
|         | 615                          | 80H                   | 756                          | 0                    |
|         | 616                          | 0                     | 757                          | 0                    |
|         | 617                          | 0                     | 758                          | 0                    |
|         | •                            |                       |                              |                      |
|         | •                            |                       | •                            |                      |
|         | •                            |                       | •                            |                      |
|         | 6C0                          | 0                     | 801                          | 0                    |
|         | 6C1                          | 0                     | 802                          | 0                    |

#### Content of buffer after function is complete:

| Ref.    | Scratch Pad<br>Address (Hex) | <b>Request Buffer</b> | Scratch Pad<br>Address (Hex) | <b>Return Buffer</b> |  |  |
|---------|------------------------------|-----------------------|------------------------------|----------------------|--|--|
|         | 610                          | 0                     |                              |                      |  |  |
|         | 611                          | 02H                   | 752                          | 88H                  |  |  |
| R12     | 612                          | OCH                   | 753                          | 12H                  |  |  |
|         | 613                          | 40H                   | 754                          | 20H                  |  |  |
| I1+1024 | 614                          | 80H                   | 755                          | 00110111 status      |  |  |
|         | 615                          | 80H                   | 756                          | 0000000 override     |  |  |
|         | 616                          | 0                     | 757                          | 0                    |  |  |
|         | 617                          | 0                     | 758                          | 0                    |  |  |
|         | •                            |                       |                              |                      |  |  |
|         | •                            | •                     | •                            | •                    |  |  |
|         | •                            | •                     | •                            |                      |  |  |
|         | 6C0                          | 0                     | 801                          | 0                    |  |  |
|         | 6C1                          | 0                     | 802                          | 0                    |  |  |

In the above example, R12 has the value 2012H and I1+1024 is not overridden. Note that the status of the entire byte, I1+1017 through 1024 is returned.


. . \*

This chapter explains the Series Five<sup>®</sup> PLC ladder logic programming and register setup for serial data communications between the Communications Control Module (CCM), or Genius bus controller.

### **Read/Write CCM**

°...-

As shown in Figure 4-1, the Read CCM and Write CCM instructions move data through a CCM or Genius bus controller to or from a remote device. You can use RD or WR CCM to send and receive data with any slave CCM compatible device. RD or WR CCM can also be used to communicate with other Series Five using Genius Bus Controllers.



\*TRANSFER COMMANDS ARE USED TO COMMUNICATE BETWEEN A SERIES FIVE AND A SERIES SIX CPU. REFER TO APPLICATION NOTES FOR DETAILS.



# 4-1

Each of the instructions in Figure 4-1 has a single register operand which specifies the starting address of a block of six registers containing the following information:

- Slot number of the local CCM or Genius I/O bus controller.
- Target memory type.
- Starting address within the memory type of the remote target device.
- Length of the data to be transferred.
- Starting register in the local CPU for the data buffer.

#### NOTE

The Read/Write (RDCCM, WRCCM) command cannot be used to communicate on a Genius link between a Series Five and a Series Six CPU. The TRANSFER command must be used instead. Refer to GFK-0248 Series Five Programmable Controller Genius Bus Controller User's Manual for details.

#### **Command Symbology**

The Read (RDCCM) ladder logic instruction is used to request data from a remote location to the data register buffer in the local CPU. Likewise, the Write (WRCCM) instruction is used to send data from the local CPU to a remote device.

R\*\*\*\*\* R\*\*\*\*\* --|RDCCM|-- or --|WRCCM|--

# **CCM/CPU Memory Mapping**

Several areas of memory in the Series Five PLC provide special functions. These functions include the special purpose coils, dedicated registers, and the CPU's scratch pad memory. See Chapter 3 for details.

The CCM protocol must be given a start address and a length. The start address plus the length should not go past the end of a table boundary. Definitions for these items in memory are provided in Chapter 3, Table 3-1 CCM/CPU Memory Mapping.

CAUTION

Extreme care must be used when writing to any Scratch Pad location. It is strongly recommended that you consult GE Fanuc Field Service before doing this.

#### **Communication Examples**

#### GFK-0244

#### Setup Registers for Read/Write

Before execution, the following registers must contain the data listed below. (Refer to the Table 3-1)

#### **Read CCM**

| Rxxxxx | = | Slot number of the local CCM or Genius bus controller. |
|--------|---|--------------------------------------------------------|
| + 1    | = | CCM ID or serial bus address of Genius bus controller. |
| + 2    | = | CCM memory type to read from (see Table 3-1).          |
| + 3    | = | Start address in target (See table 3-1).               |
| + 4    | = | Length to read (words = registers) maximum = $64$ .    |
| + 5    | = | First register in local receive buffer.                |
|        |   |                                                        |

#### Write CCM

| Rxxxxx | = | Slot number of local CCM or Genius bus controller.     |
|--------|---|--------------------------------------------------------|
| + 1    | = | Destination CCM ID or serial bus address of Genius bus |
|        |   | controller.                                            |
| + 2    | = | CCM memory type to write to (see Table 3-1).           |
| + 3    | = | Start address in target (see Table 3-1).               |
| + 4    | = | Length to write (words = registers) maximum = $64$ .   |
| + 5    | = | First register in local transmit buffer.               |

After execution, the register data buffer pointed to by Rxxxxx +5 will contain the data from the remote device.

Special internal bits affected are I1-0081 to I1-0204 and I1-0045 for the CCM and Genius bus controller. (see Chapter 3)

# **Programming the Read/Write Instruction**

- 1. From the Supervisor menu, select EDIT Prog (F2). The Edit Program function keys will be displayed at the bottom of the screen.
- 2. Select either INSERT RUNG (F5) or EDIT RUNG (F6), depending upon whether you wish to begin a new rung or edit an existing rung.
- 3. Enter any logic required to control power flow to the function.
- 4. With the cursor at the location for the element, select ADVNCD MN GR (F7), CONTRL FUNC (F6), READ WRITE (F5), and then READ CCM (F1) or WRITE CCM (F2). The Read/Write CCM display will appear.
- 5. Using the numeric keypad, type in the reference for the transfer.
- 6. After entering the reference, press the Enter key.
- 7. Complete the logic for the rung; then press the Accept key. The Edit key functions will reappear at the bottom of the screen.

# **Programming Examples**

The Read CCM (RDCCM) and Write CCM (WRCCM) ladder logic instructions move data to and from the local CPU or Genius Bus Controller via the CCM. Each of these instructions has a single register operand which specifies the starting address of a block of six registers.

#### **Reading from a Remote CCM Device**

- 1. Read inputs I0017-I0048 from the remote Series Five CPU/CCM with CCM ID number 20.
- 2. Load the data into registers R00200-R00201. Assume that the local CCM module is in slot 5.
- 3. Preset the registers with the following data:

| R1001 | = | 05   | (slot number of local CCM module).                       |
|-------|---|------|----------------------------------------------------------|
| R1002 | = | 20   | (CCM ID of remote CPU).                                  |
| R1003 | = | 02   | (memory type = input table).                             |
| R1004 | = | 103H | (start address for input table, I0017).                  |
| R1005 | = | 02   | (number of words to fetch; also, length of data buffer). |
| R1006 | = | 200  | (data buffer to start at register R0200).                |

#### 4. Execute the following:

R01001 --|RDCCM|--

# 5. During execution, status bit I1-0091 will indicate the transfer status:

| 0 | = | done                 |
|---|---|----------------------|
| 1 | = | executing for slot 5 |

6. Status bit I1-0092 will indicate the error status:

 $\begin{array}{rcl} 0 & = & OK \\ 1 & = & error \ for \ slot \ 5 \end{array}$ 

7. The data buffer for this example will contain the following data:

R00200 = 0002 (inputs 17, 19-32 are 0, input 0018 is 1). R00201 = 0004 (inputs 33, 34, 36-48 are 0, input 35 = 1).

#### Writing to a Remote CCM Device

- 1. Write data buffer (R00220-00222) to outputs 1-48 in a remote Series Five CPU/CCM with CCM ID number 4. The local CCM module is in slot 2.
- 2. Preset the registers as follows:

| R00501         | = | 02 (local CCM master module is in slot 2). |
|----------------|---|--------------------------------------------|
| R00502         | = | 04 (target CCM ID).                        |
| R00503         | = | 03 (target memory type = output table).    |
| R00504         | = | 0101H (starting address for outputs 1-48). |
| R00505         | = | 03 (number of words to send).              |
| R00506         | = | 220 (start data buffer at register 220).   |
| R000220-R00222 | = | data to send.                              |

4-4

3. Execute the following:

R00501

4. During execution, status bit I1-0085 will indicate the transfer status:

0 = done 1 = executing for slot 2

5. Status bit I1-0086 will indicate the error status:

$$\begin{array}{rcl} 0 & = & OK \\ 1 & = & error \ for \ slot \ 2 \end{array}$$

-:

The purpose of this chapter is to provide complete information on the Series Five<sup>®</sup> PLC Communications Control Module (CCM) serial interface protocol and timing. Information to allow the user to write a serial communications driver for a host computer or microprocessor.

# **Introduction, Master-Slave Protocol**

The serial interface protocol, used for CCM data communications, is based on the Master-Slave portion of CCM protocol developed for Series Six<sup>®</sup> PLC data communications. As used with the Series Five PLC, the CCM module can function either as a master or slave. For a complete description of all aspects of CCM protocol, see GEK-25364, Chapter 4, of the Series Six Data Communications Manual.

#### Asynchronous Data Format

Data transferred across the physical channel will be sent serially one bit at a time. The data is divided into 8-bit bytes and is transferred using an asynchronous format. Figure 5-1 shows the data format. If parity is selected, an additional parity bit is sent.

|       |       |       |       |       |       |       |       |       |        | a40015 | 5 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|---|
| BIT 0 | BIT 1 | BIT 2 | BIT 3 | BIT 4 | BIT 5 | BIT 6 | BIT 7 | BIT 8 | BIT 9  | BIT 10 |   |
|       |       |       |       |       |       |       |       |       |        |        |   |
|       |       |       |       |       |       |       |       |       |        |        |   |
|       |       |       |       |       |       |       |       |       |        |        |   |
|       |       |       |       |       |       |       |       |       |        |        | ł |
| START | LSB   |       |       | D.    | ATA   |       |       | MSB   | PARITY |        |   |
|       |       |       |       |       |       |       |       |       |        | (1)    |   |

\*ODD OR NONE VIA DIP SWITCH SELECTION ON MODULE NOTE : WHEN PARITY IS DISABLED, BIT 9 IS NOT INCLUDED IN THE TRANSMISSION.

#### Figure 5-1. Serial Data Format

The 8-bit binary data is transferred with parity and block check codes. As will be explained in detail later, the data transfer consists of a 17-byte header followed by data blocks. The data transfers can be in either direction and are specified by the header.

#### **Control Character Coding**

The control characters used in the serial interface protocol and their meaning are given in Table 5-1.

# 5-1

| Abbreviation | Hex Value | Meaning                   |
|--------------|-----------|---------------------------|
| SOH          | 01        | Start of Header           |
| STX          | 02        | Start of Text             |
| ETX          | 03        | End of Text               |
| EOT          | 04        | End of Transmission       |
| ENQ          | 05        | Enquiry                   |
| ACK          | 06        | Acknowledgment            |
| NAK          | 15        | Negative Acknowledgment   |
| ETB          | 17        | End of Transmission Block |

Table 5-1. Control Character Codes

#### **Enquiry Response Delay**

The enquiry response delay is a timed delay inserted between the receipt of an enquiry sequence from a master and the response by a slave. This is done so that idle slaves, which monitor any active link between the master and a slave, will not be confused by enquiry sequences occurring during transmission of the data text. When an idle slave recognizes an apparent enquiry sequence, it starts an internal timer of 10 msec. plus 4 character times.

If any other character is received before the timer times out, the idle slave disregards the enquiry. Therefore, any device transmitting data text on a multidrop link should ensure that there will be no gaps in the text greater than 2 character times so an idle slave will not misinterpret data as an enquiry sequence.

#### Normal Sequence\*, Master-Slave

The form of the Normal (N) Enquiry Sequence from the master to the target slave CCM and the response by the target slave CCM is shown below.

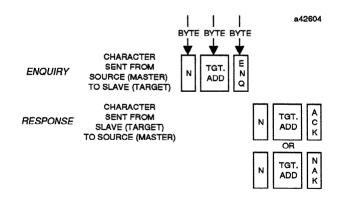



Figure 5-2. Enquiry Sequence from Master to Target Slave

\* The term, Normal Sequence, is retained from the explanation of CCM protocol in GEK-25364, Series Six Data Communications Manual.

| Ν              | : | ASCII coded "N" (4E in HEX coding) used to specify Normal Sequence operationsent as a single byte.                                       |
|----------------|---|------------------------------------------------------------------------------------------------------------------------------------------|
| Target Address | : | Target address is the target ID number (set with the CCM master or CPU ID DIP switches) to                                               |
|                |   | which the master is attempting communications plus 20H (ASCII coded "!" though "z" or 21 through 7A in HEX coding)sent as a single byte. |
| ENQ            | : | ASCII control character meaning enquiresent as a single byte.                                                                            |

ACK or NAK

: Response from slave meaning acknowledge or negative acknowledgment--sent as a single byte.

If the slave response to a master enquiry is invalid, the master will delay a short time and retry the enquiry. The master will retry the enquiry 3 times before aborting the communication.

#### **Normal Sequence Protocol Format**

The general format for a successful communication is shown in Figures 5-3 and 5-4. Figure 5-3 shows a data transfer from the source device to the target device and Figure 5-4 shows a data transfer from the target device to the source device. The source device is always the initiator of the request; the target device receives the request.

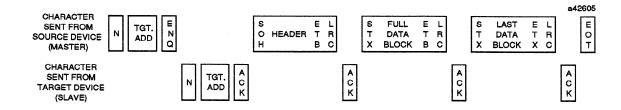



Figure 5-3. Data Transfer from Master to Slave

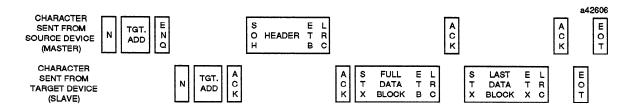



Figure 5-4. Data Transfer from Slave to Master

## **Master-Slave Normal Sequence Flow Charts**

To fully understand how the protocol operates under error conditions see the flow charts and accompanying explanation.

### Normal Sequence, Master (See Figure 5-5)

```
Start N Sequence.
Start N. Enquiry.
Has enquiry been retired 3 times?
  If YES, send EOT
  If NO, send N Enquiry
Read N Enquiry response.
Is there a timeout or error in response (response not an ACK or a NAK)?
  If YES, delay 10 msec. or the turn-around delay if it is not 0 msec.,
  Increment enquiry count and return to Start N Enquiry
  If NO, send the header to the slave.
Read response to header.
Is there a timeout on the response? (Condition 4, Table 5-3)
  If YES, send an EOT and exit the initiate sequence.
  If NO, is response an ACK or NAK?
    If YES, has header been retried 3 times?
      If YES, send EOT and exit initiate sequence.
      If NO, return to "Send Header".
    If NO, go to "Read or Write Data Blocks" depending on the direction of
    data transfer.
```

Normal Response, Slave (See Figure 5-6)

```
Start N Response.
Read N Enquiry.
Is N Enquiry sequence correct?
  If NO, return to "Read N Enquiry".
  If YES, Start timer of 10 ms plus 4 character times.
Is timer done?
  If NO, have any characters arrived?
    If NO, go to "Is Timer Done?".
    If YES, go to "Read N Enquiry".
  If YES, send N Enquiry Response.
Read header.
Is there a timeout between ENQ response and the first character of the header?
  If YES, send EOT and exit.
  If NO, is header OK?
    If NO, has header been retried 3 times?
      If YES, send EOT and exit.
      If NO, send NAK and return to "Read Header".
    If YES, send ACK and go to "Read and Write Data Blocks" depending on the
    direction of data transfer.
```

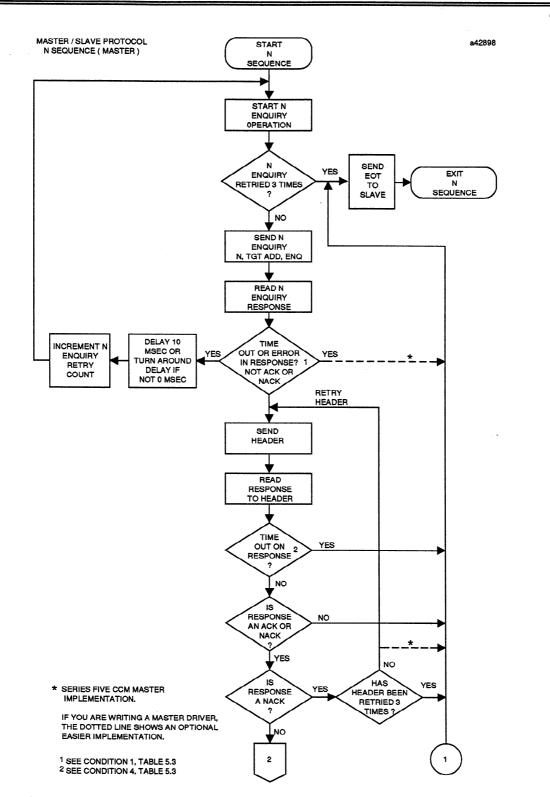



Figure 5-5. N Sequence, Master

.

#### GFK-0244

GFK-0244

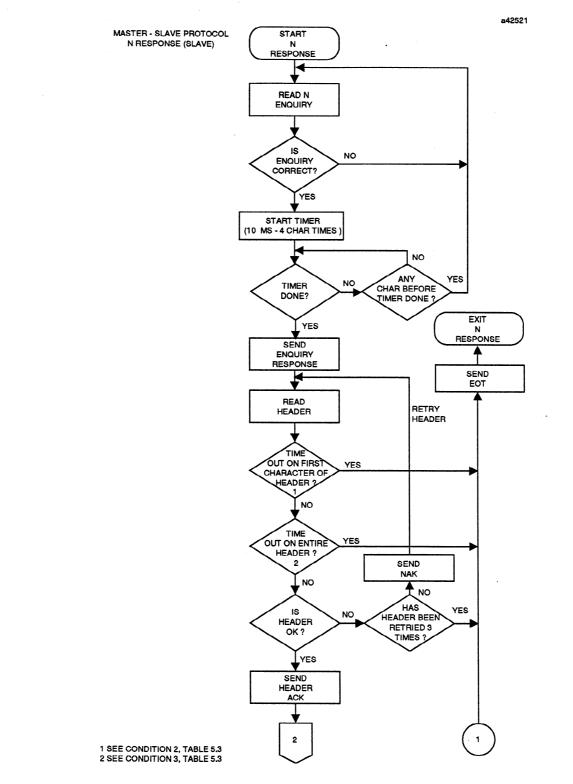



Figure 5-6. N Response, Slave

GFK-0244

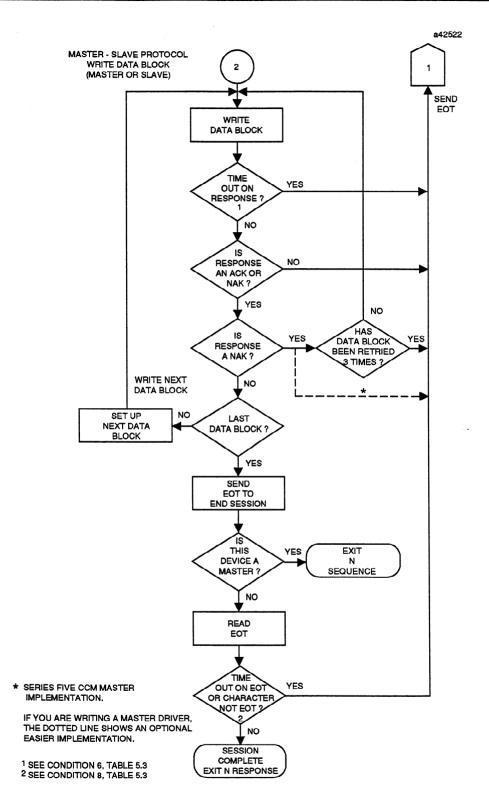



Figure 5-7. Write Data Blocks, Master or Slave

λ.

GFK-0244

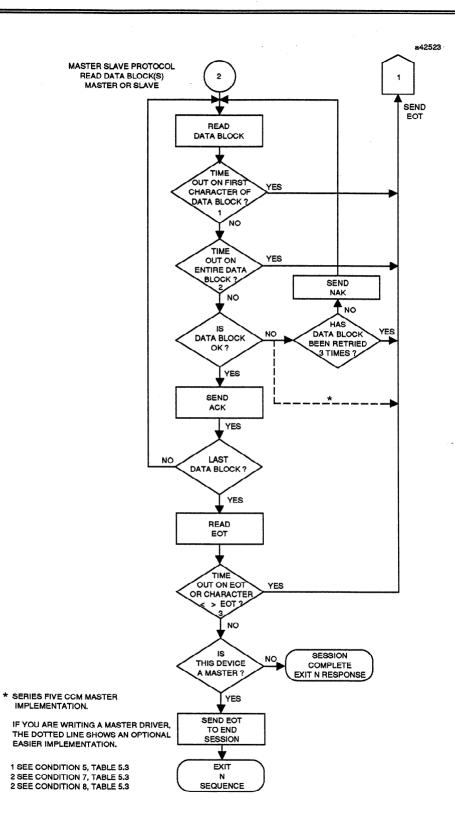



Figure 5-8. Read Data Blocks, Master or Slave

## Write Data Blocks, Master or Slave (See Figure 5-7)

```
Write data block.
Is there a timeout on the data block response?
                                                 (Condition 6, Table 5-3)
  If YES, is data block response ACK or NAK?
  If NO, is data block response ACK or NAK?
    If not ACK or NAK, send EOT to other device and exit.
    If ACK or NAK, is it a NAK?
      If YES, has data block been retried 3 times?
      If NO, return to "Write Data Block".
   *If NO, is it last data block?
      If NO, set up next data block and return to "Write Data Block".
      If YES, send EOT to end session.
Is this device a Master?
  If YES, exit N Sequence.
  If NO, read EOT.
Is there a timeout on EOT or is character not an EOT? (Condition 8, Table 5-3)
  If there is a timeout or the character is not EOT, send EOT and exit N
  Response.
  If EOT is OK, session is complete. Exit N response.
```

#### Read Data Blocks, Master or Slave (See Figure 5-8)

```
Read data block.
Is there a timeout on the first character of the data block? (Condition 5,
Table 5-3)
  If YES, send an EOT and exit.
  If NO, is there a timeout on the entire data block? (Condition 7, Table 5-3)
    If YES, send an EOT and exit.
    If NO, is the data block OK?
      If NO, has the data block been retried 3 times?
        If YES, send EOT and exit.
        If NO, send NAK and return to "Read Data Block".
      If YES, send ACK.
     *Is it the last data block?
        If NO, return to "Read Data Block".
        If YES, read EOT.
        Is there a timeout on the EOT or is the character not an EOT?
          If there is a timeout or the character is not EOT, send EOT and exit.
          If EOT is OK, is this device a master?
            If NO, the session is complete, exit N Response.
            If YES, send EOT to end session, exit N Sequence.
```

## Master-Slave Message Transfers

As explained before, when the master wishes to initiate a data transfer, it issues a three-character enquiry sequence. The receiving device responds by sending a three-character acknowledge or negative acknowledge sequence. This establishes a link which permits the transfer of a message. Message transfers consist of a 17-byte header, sent by the master, followed by a block of data.

#### **Header Block**

A header block is sent before the text data block to describe transfer of data. The header specifies the direction of the data transfer, the amount and location of the data to be transferred, and the destination of the transfer. The header is composed of 17 bytes; the header format is shown in Figure 5-9.

|             |     |                     | •           |                   |                   |                            |                            |             |             | a40368 |
|-------------|-----|---------------------|-------------|-------------------|-------------------|----------------------------|----------------------------|-------------|-------------|--------|
| S<br>O<br>H | ID  | DATA<br>FLOW<br>DIR | MEM<br>TYPE | MEM<br>ADD<br>MSB | MEM<br>ADD<br>LSB | NO<br>COMP<br>DATA<br>BLKS | NO<br>BYTES<br>LAST<br>BLK | SRCE<br>I D | E<br>T<br>B | R<br>C |
| 1           | 2 3 | 4                   | 5           | 67                | 89                | 10 11                      | 12 13                      | 14 15       | 16          | 17     |

## Figure 5-9. Serial Header Format

| BYTE 1 SOH    | (01H)                                                               |
|---------------|---------------------------------------------------------------------|
| BYTES $2 + 3$ | CCM (target) ID Number (not encoded the same as the target address) |
| BYTES $4 + 5$ | Data flow direction, target memory type                             |
| BYTEŠ 6 + 7   | Most significant byte of address of requested data                  |
| BYTES 8 + 9   | Least significant byte of address of requested data                 |
| BYTES 10 + 11 | Number of complete data blocks to follow the header                 |
| BYTES 12 + 13 | Number of bytes in incomplete last block.                           |
| BYTES 14 + 15 | Source ID Number                                                    |
| BYTE 16 ETB   | (17H)                                                               |
| BYTE 17 LRC   | (Exclusive "OR" of Bytes 2-15)                                      |

The information in bytes 2-15 are ASCII coded hexadecimal. Valid ASCII coded hexadecimal values are 30H-39H (0-9) and 41H-46H (A-F). For fields requiring more than one byte, the most significant byte is transmitted first.

## Target ID Number

The CCM ID (target ID) is the identification number and it is set with DIP switches. This number can range from 1 to 90. (In ASCII coded HEX: 01 to 5A). This is not encoded the same as the Target Address in the enquiry sequence. See the section, Normal Enquiry Sequence, in this chapter.

## **Data Flow Direction and Memory Type**

Bytes 4 and 5 inform the CCM of the direction of the transfer and the memory type involved. Refer to Table 5-2 below for (Byte 4) Data Flow Direction.

| Contents of Byte 4<br>DEC HEX ASCII |    |   | Data Flow Direction  |
|-------------------------------------|----|---|----------------------|
| 48                                  | 30 | 0 | Read from CPU or CCM |
| 56                                  | 38 | 8 | Write to CPU or CCM  |

The target memory address specifies the address within the CPU, CCM where the transfer is to begin. The mapping of reference numbers to numbers used for the target memory address is shown in Chapter 3, Table 3-1, Series Five CCM/CPU Memory Mapping.

Refer to the appropriate Series One, Series Three, or Series Six User's Manual, listed in the Preface of this manual, for other PLC applications.

- 40000

### Number of Complete Data Blocks to Follow Header

This specifies the number of 256-byte data blocks to be transferred following the header. For more information, refer to the following section on Text Data Blocks and also Chapter 3, Table 3-1, Series Five CCM/CPU Memory Mapping. This information will help you to determine how many 8-bit bytes are required for a particular transfer.

### Number of Bytes in Incomplete Last Block

This specifies the number of bytes in the last data block. When the number of complete data blocks is zero, this number specifies the total number of bytes to be transferred.

## Source ID Number

The source ID number is the identification number of the source device. For a Series Five CPU, this ranges from 1 to 5AH.

## **Text Data Block**

The text data block always starts with a Start-Of-Text (STX) character which is followed by the text. The text is followed by an End-Of-Text (ETX) character. This is then followed by the text data checksum. This checksum is used to verify the data's integrity. The checksum, (LRC) is an exclusive "OR" of all the text data bytes.

When 16-bit information (registers or user logic) is being transferred in a text data block, the least significant byte is transferred first followed by the most significant byte.

## Header and Text Data Block Response

The header and text data blocks are responded to with an acknowledge (ACK) or negative acknowledge (NAK). An ACK means that the header or text was acceptable and grants permission to the sending device to start sending the next data block.

A NAK means that the header or text was not acceptable and asks for a retransmission of the header or data. The unacceptable header or text may be retried three times.

### Message Termination

After the ACK to the final text data block has been received, the device receiving the ACK sends an End-Of-Transmission (EOT) character to close the serial link. The master always terminates the link with an EOT.

#### GFK-0244

### **Timing Considerations**

A timeout occurs on a serial link when the CCM or remote CCM device does not receive a response, a header, or data from another device within a fixed amount of time.

## **Serial Link Timeouts**

Timeouts are used on the serial link for error detection, error recovery, and to prevent missing end-of-block sequences. Whenever a serial link timeout occurs, the CCM or remote CCM device will abort the conversation and send an EOT to the other device. After an EOT, a new enquiry sequence must be sent to restore communications. Refer to Table 5-3 for timeouts at any point in the serial protocol.

### **Turn-Around Delays**

Turn-around delay options of 0 to 10 msec. for the CCM can be selected by DIP switch. A 10-msec. turn-around delay should be selected when using modems in the half-duplex mode of operation or when using full-duplex modems in multidrop configurations. This delay allows the time needed to signal the modem to turn on and ringing on the line to stop before actual transmission of data.

The CCM will delay 10 msec. before sending a control character, the start of header, or the start of a text data block.

When the 10 msec. turn-around delay is selected, the time is automatically added to the serial timeouts in Table 5-3.

|                                                  | Timeout With Turn Around Delay |          |  |
|--------------------------------------------------|--------------------------------|----------|--|
| Condition                                        | 0 msec.                        | 10 msec. |  |
| 1. Wait on ACK/NAK following ENQ                 | 800                            | 810      |  |
| 2. Wait on start of header following ACD of ENQ  | 800                            | 810      |  |
| 3. Wait on header to finish: Data Rate (bps)     |                                |          |  |
| 300                                              | 2670                           | 2680     |  |
| 1200                                             | 670                            | 680      |  |
| 9600                                             | 670                            | 680      |  |
| 19200                                            | 670                            | 680      |  |
| 4. Wait on ACK/NAK following header              | 2000                           | 2010     |  |
| 5. Wait on start of data following ACK of header | 20000                          | 20010    |  |
| 6. Wait on ACK/NAK following data block          | 20000                          | 20010    |  |
| 7. Wait on data block to finish: Data Rate (bps) |                                |          |  |
| 300                                              | 33340                          | 33350    |  |
| 1200                                             | 8340                           | 8450     |  |
| 9600                                             | 8340                           | 8350     |  |
| 19200                                            | 8340                           | 8350     |  |
| 8. Wait on EOT to close link                     | 800                            | 810      |  |

## **Table 5-3. Serial Link Timeouts**

## **Communication Errors**

Serial Link communication errors are divided into four groups:

- 1. Invalid Header
- 2. Invalid Data
- 3. Invalid NAK, ACK or EOT
- 4. Serial Link Timeouts

The different errors are outlined in the following four sections:

#### NOTE

If you experience communication errors, retrieve the Diagnostic Status Words for troubleshooting information. For the format of the diagnostic status words, see the section, Diagnostic Status Words, in Chapter 5.

## **Invalid Header**

The following errors cause the header to be invalid and therefore NAK'ed by the target device.

- Incorrect LRC (header checksum).
- No SOH.
- No ETB.
- Parity, overrun, or framing error.
- Invalid unit ID number (does not match resident unit ID number).
- Invalid memory type.
- Attempted to access memory which is password protected.
- Invalid header character (not 0-9, A-F).
- Invalid address for specified memory address (see description of memory types).
- Number of complete blocks and number of bytes in last block both = 0
- Number of bytes in last block not even when the memory type is 1 or 7.
- Writing a partial instruction to user logic.

The header may be retried a maximum of three times. If the CCM is configured as a slave and the header still has one of the errors listed, the CCM will abort the session and send and EOT to the master. The Slave then waits for an ENQ to start a new session.

## **Invalid Data**

If any of the following errors occur, the same procedure is followed as for an invalid header.

- Incorrect LRC (checksum)
- No STX
- No ETB or ETX

(ETX must occur in last block only)

• Parity, Overrun, or Framing Error

#### GFK-0244

## Invalid NAK, ACK, or EOT

If the CCM is expecting one of these control characters and a character is received that is not one of these, the CPU or CCM aborts the session and sends an EOT to the other device.

## Serial Link Timeout

If at any time during the conversation the CCM times out waiting for the other device, the conversation is aborted and an EOT is send to the other device.

. . .

## Introduction

The Communications Control Module (CCM - IC655CCM500B, Revision B, or later) uses two protocols, CCM Serial Interface and Remote Terminal Unit (RTU). The CCM Serial Interface protocol is explained in Chapter 5 of this manual. When the CCM module (CCM device) is configured as an RTU slave, it uses the protocol as explained in this chapter.

RTU protocol is a query-response protocol used for communication between the CCM device and a host computer which is capable of communicating using RTU protocol. The host computer is the master device and it transmits a query to a RTU slave which responds to the master. The CCM device, as an RTU slave, cannot query; it can only respond to the master.

The RTU data transferred consists of 8-bit binary characters with or without parity. No control characters are used to control the flow of data, there is, however, an error check (Cyclic Redundancy Check) included as the final field of each query and response to ensure accurate transmission of data.

## **Message Format**

The general formats for RTU message transfers are shown below.

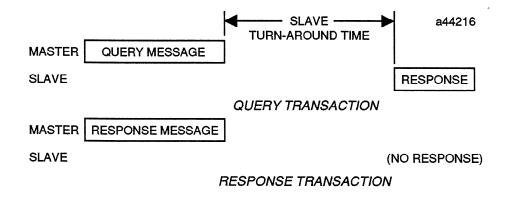



Figure 6-1. RTU Message Transfers

A distinction is made between two communicating devices. The device which initiates a data transfer is called the master and the other device is called the slave. The Series 5 device can only be a RTU slave.

The master device begins a data transfer by sending a query request message. A slave completes that data transfer by sending a response message if the master sent a query message addressed to it. No response message is sent when the master sends a broadcast request. The time between the end of a query and the beginning of the response to that query is called the slave turn-around time.

## 6-1

## **Message Types**

The RTU protocol has four message types; query, normal response, error response, and broadcast.

## Query

The master sends a message address to a single slave.

## Normal Response

After the slave performs the function requested by the query, it sends back a normal response for that function. This indicates that the request was successful.

## **Error Response**

The slave receives the query, but for some reason it cannot perform the requested function. The slave sends back an error response which indicates the reason the request could not be processed. (No error message will be sent for certain types of errors. For more information see section, Communication Errors).

## Message Fields

The message fields for a typical message are shown below.

| <frame/> |          |             |       |  |  |  |  |
|----------|----------|-------------|-------|--|--|--|--|
| Station  | Function | Information | Error |  |  |  |  |
| Address  | Code     |             | Check |  |  |  |  |

## Station Address

The station address is the address of the slave station selected for this data transfer. It is one byte in length and has a value from 1 to 90 inclusive. The address selects a slave station with that station address.

## **Function Code**

3

The function code identifies the command being issued to the station. It is one byte in length and is defined for the values 0 to 255 as follows:

- 0 Illegal Function
- 1 Read Output Table
- 2 Read Input Table
- \* These two functions are identical.
- 4 Read Registers \*
- 5 Force Single Output

Read Registers \*

- 6 Preset Single Register
- 7 Read Exception Status
- 8 Loopback Maintenance
- 9-14 Unsupported Function

### **RTU Communications Protocol**

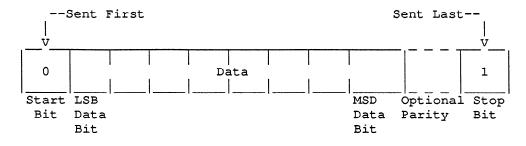
#### GFK-0244

- 15 Force Multiple Outputs
- 16 Preset Multiple Registers
- 17 Report Device Type
- 18- 64 Unsupported Function
- 65 Read Output Override Table
- 66 Read Input Override Table
- 67 Read Scratch Pad Memory
- 68 Read User Logic
- 69 Write Output Override Table
- 70 Write Input Override Table
- 71 Write Scratch Pad Memory (See CAUTION below)
- 72-127 Unsupported Function
- 128-255 Reserved for Exception Responses

# CAUTION

Extreme care must be used when writing to any Scratch Pad location. It is strongly recommended that you consult GE Fanuc Field Service before doing this.

## **Information Field**


The information field contains all of the other information required to further specify or respond to a requested function. Detailed specification of the contents of the information field for each message type, query, normal response, and error response--and each function code is found in the section, Message Descriptions.

## **Error Check Field**

The error check field is two bytes in length and contains a cyclic redundancy check (CRC-16) code. Its value is a function of the contents of the station address, function code, and information field. The details of generating the CRC-16 code are in the section, Cyclic Redundancy Check (CRC). Note that the information field is variable in length. In order to properly generate the CRC-16 code, the length of frame must be determined. See section, Calculating the Length of Frame, to calculate the length of a frame for each of the defined function codes.

## **Character Format**

A message is sent as a series of characters. Each byte in a message is transmitted as a character. The illustration below shows the character format. A character consists of a start bit (0), eight data bits, an optional parity bit, and one stop bit (1). Between characters the line is held in the 1 state.



## **Message Termination**

Each station monitors the time between characters. When a period of three character times elapses without the reception of a character, the end of a message is assumed. The reception of the next character is assumed to be the beginning of a new message.

The end of a frame occurs when the first of the following two events occurs:

- The number of characters received for the frame is equal to the calculated length of the frame.
- A length of 3 character times elapses without the reception of a character.

## **Timeout Usage**

Timeouts are used on the serial link for error detection, error recovery, and to prevent the missing of the end of messages and message sequences. Note that although the module allows up to three character transmission times between each character in a message that it receives, there is no more than half a character time between each character in a message that the module transmits.

The slave turn-around times listed in Table 6-1 are the guaranteed maximum times for the communication module. In many cases the actual turn-around times will be much less.

| Description      |                                                                                                        | RTU Turn-Around Time<br>(Milliseconds)               |
|------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Normal Responses |                                                                                                        |                                                      |
| Function Code    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>15<br>16<br>17<br>65<br>66<br>67<br>68<br>69<br>70<br>71<br>72 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 |
| Error Responses  |                                                                                                        |                                                      |
| Error Code       | 1<br>2<br>3<br>4                                                                                       | 500<br>500<br>500<br>500                             |

Table 6-1. RTU Turn-Around Time

## Cyclic Redundancy Check (CRC)

The Cyclic Redundancy Check (CRC) is one of the most effective systems for checking errors. The CRC consists of 2 check characters generated at the transmitter and added at the end of the transmitted data characters. Using the same method, the receiver generates its own CRC for the incoming data and compares it to the CRC sent by the transmitter to ensure proper transmission.

A complete mathematic derivation for the CRC will not be given in this section. This information can be found in a number of texts on data communications. The essential steps which should be understood in calculating the CRC are as follows:

- The data bits which make up the message are multiplied by the number of bits in the CRC.
- The resulting product is then divided by the generating polynomial (using modulo 2 with no carries). The CRC is the remainder of this division.
- Disregard the quotient and add the remainder (CRC) to the data bits and transmit the message with CRC.
- The receiver then divides the message plus CRC by the generating polynomial and if the remainder is 0, the transmission was transmitted without error.

A generating polynomial is expressed algebraically as a string of terms in powers of X such as  $X^3 + X^2 + X^0$  (or 1) which can in turn be expressed as the binary number 1101. A generating polynomial could be any length and contain any pattern of 1s and 0s as long as both the transmitter and receiver use the same value. For optimum error detection, however, certain standard generating polynomials have been developed. RTU protocol uses the polynomial  $X^{16} + X^{15} + X^2 + 1$  which in binary is 1 1000 0000 0000 0101. The CRC this polynomial generates is known as CRC-16.

The discussion above can be implemented in hardware or software. One hardware implementation involves constructing a multi-section shift register based on the generating polynomial.

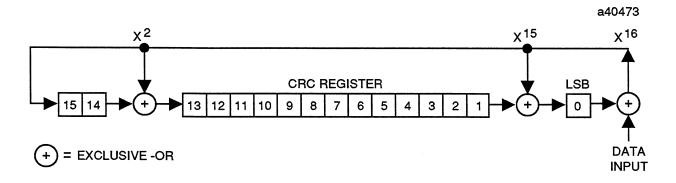
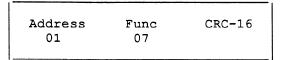



Figure 6-2. Cyclic Redundancy Check (CRC) Register

To generate the CRC, the message data bits are fed to the shift register one at a time. The CRC register contains a preset value. As each data bit is presented to the shift register, the bits are shifted to the right. The LSB is XORed with the data bit and the result is: XORed with the old contents of bit 1 (the result placed in bit 0), XORed with the old contents of bit 14 (and the result placed in bit 13), and finally, it is shifted into bit 15. This process is repeated until all data bits in a message have been processed. Software implementation of the CRC-16 is explained in the next section.

## **Calculating the CRC-16**

The pseudo code for calculation of the CRC-16 is given below.


|            | Preset byte count for data to be sent.                                                                            |
|------------|-------------------------------------------------------------------------------------------------------------------|
|            | Initialize the 16-bit remainder (CRC) register to all ones.                                                       |
|            | XOR the first 8-bit data byte with the high order byte of the 16-bit CRC register. The result is the current CRC. |
| INIT SHIFT | Initialize the shift counter to 0.                                                                                |
| SHIFT      | Shift the current CRC register 1 bit to the right.                                                                |
|            | Increment shift count.                                                                                            |
|            | Is the bit shifted out to the right (flag) a 1 or a 0?                                                            |
|            | If it is a 1, XOR the generating polynomial with the current CRC.                                                 |
|            | If it is a 0, continue.                                                                                           |
|            | Is shift counter equal to 8?                                                                                      |
|            | If NO, return to SHIFT.                                                                                           |
|            | If YES, increment byte count.                                                                                     |
|            | Is byte count greater than the data length?                                                                       |
|            | If NO, XOR the next 8-bit data byte with the current CRC                                                          |
|            | and go to INIT SHIFT.                                                                                             |
|            | If YES, add current CRC to end of data message for transmission and exit.                                         |

When the message is transmitted, the receiver will perform the same CRC operation on all the data bits and the transmitted CRC. If the information is received correctly the resulting remainder (receiver  $\overline{CRC}$ ) will be 0.

### **Example CRC-16 Calculation**

The CCM device transmits the rightmost byte (of registers or discrete data) first. The first bit of the CRC-16 transmitted is the MSB. Therefore, in the example the MSB of the CRC polynomial is to the extreme right. The X16 term is dropped because it affects only the quotient (which is discarded) and not the remainder (the CRC characters). The generating polynomial is therefore 1010 0000 0000 0001. The remainder is initialized to all 1s.

As an example we will calculate the CRC-16 for RTU message, Read Exception Status (07). The message format is as follows:



In this example we are querying device number 1 (address 01). We need to know the amount of data to be transmitted and this information can be found for every message type in the section, Calculating the Length of Frame. For this message the data length is 2 bytes.

| Tra                 | ansmitter                                               |      | Re                   | ceiver *                              |      |
|---------------------|---------------------------------------------------------|------|----------------------|---------------------------------------|------|
| CRC-1               | 6 Algorithm                                             |      | CRC-1                | 6 Algorithm                           |      |
|                     | MSB LSB                                                 | Flag |                      | MSB LSB                               | Flag |
| Initial Remainder   | 1111 1111 1111 1111                                     | U    | Rcvr CRC after data  | 1110 0010 0100 0001                   | U    |
| XOR 1st data byte   | 0000 0000 0000 0001                                     |      | XOR 1st byte Tms CRC | 0000 0000 0100 0001                   |      |
| Current CRC         | 1111 1111 1111 1110                                     |      | Current CRC          | 3000000000000000000000000000000000000 |      |
| Shift 1             | 0111 1111 1111 1111                                     | 0    | Shift 1              | 0111 0001 0000 0000                   | Δ    |
| Shift 2             |                                                         |      | Shift 2              |                                       | 0    |
|                     | 0011 1111 1111 1111                                     | 1    |                      | 0011 1000 1000 0000                   | 0    |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      | Shift 3              | 0001 1100 0100 0000                   | 0    |
| Current CRC         | 1001 1111 1111 1110                                     |      | Shift 4              | 0000 1110 0010 0000                   | 0    |
| Shift 3             | 0100 1111 1111 1111                                     | 0    | Shift 5              | 0000 0111 0001 0000                   | 0    |
| Shift 4             | 0010 0111 1111 1111                                     | 1    | Shift 6              | 0000 0011 1000 1000                   | 0    |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      | Shift 7              | 0000 0001 1100 0100                   | 0    |
| Current CRC         | 1000 0111 1111 1110                                     |      | Shift 8              | 0000 0000 1110 0010                   | 0    |
| Shift 5             | 0100 0011 1111 1111                                     | 0    | XOR 2nd byte tms CRC | 0000 0000 1110 0010                   |      |
| Shift 6             | 0010 0001 1111 1111                                     | 1    | Current CRC          | 0000 0000 0000 0000                   |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     | -    | Shift 1-8 yields     | 0000 0000 0000 0000                   |      |
| Current CRC         | $\frac{1010\ 0000\ 0000\ 0001}{1000\ 0001\ 1111\ 1110}$ |      | Shift 1-6 yields     | All Zeroes for                        |      |
| Current CKC         | 1000 0001 1111 1110                                     |      |                      |                                       |      |
| SL:4 7              | 0100 0000 1111 1111                                     | •    |                      | Receiver                              |      |
| Shift 7             | 0100 0000 1111 1111                                     | 0    |                      | Final CRC-16                          |      |
|                     |                                                         |      |                      | indicates                             |      |
| Shift 8             | 0010 0000 0111 1111                                     | 1    |                      | transmission correct!                 |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      |                      |                                       |      |
| Current CRC         | 1000 0000 0111 1110                                     |      |                      |                                       |      |
| XOR 2nd data byte   | 0000 0000 0000 0111                                     |      |                      |                                       |      |
| Current CRC         | 1000 0000 0111 1001                                     |      |                      |                                       |      |
| Shift 1             | 0100 0000 0011 1100                                     | 1    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     | -    |                      |                                       |      |
| Current CRC         | $\frac{1010\ 0000\ 0000\ 0001}{1110\ 0000\ 0011\ 1101}$ |      |                      |                                       |      |
| Shift 2             | 0111 0000 0001 1110                                     | 1    |                      |                                       |      |
|                     |                                                         | T    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      |                      |                                       |      |
| Current CRC         | 1101 0000 0001 1111                                     |      |                      |                                       |      |
| Shift 3             | 0110 1000 0000 1111                                     | 1    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      |                      |                                       |      |
| Current CRC         | 1100 1000 0000 1110                                     |      |                      |                                       |      |
| Shift 4             | 0110 0100 0000 0111                                     | 0    |                      |                                       |      |
| Shift 5             | 0011 0010 0000 0011                                     | 1    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      |                      |                                       |      |
| Current CRC         | 1001 0010 0000 0010                                     |      |                      |                                       |      |
| Shift 6             | 0100 1001 0000 0001                                     | 0    |                      |                                       |      |
| Shift 7             | 0010 0100 1000 0000                                     | 1    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     | 1    |                      |                                       |      |
| Current CRC         | $\frac{1010\ 0000\ 0000\ 0001}{1000\ 0100\ 1000\ 0001}$ |      |                      |                                       |      |
| Shift 8             |                                                         | 1    |                      |                                       |      |
|                     | 0100 0010 0100 0000                                     | 1    |                      |                                       |      |
| XOR Gen. Polynomial | 1010 0000 0000 0001                                     |      |                      |                                       |      |
| Transmitted CRC     | 1110 0010 0100 0001                                     |      |                      |                                       |      |
|                     | E 2 4 1                                                 |      |                      |                                       |      |

Example Message: Refer to the example of a transmitted message shown on the following page.

\*As stated before, the receiver processes incoming data through the same CRC algorithm as the transmitter. The example for the receiver starts at the point after all the data bits but not the transmitted CRC have been received correctly. Therefore, the receiver CRC should be equal to the transmitted CRC

at this point. When this occurs, the output of the CRC algorithm will be zero indicating that the transmission is correct.

The transmitted message with CRC would then be:

1110 0010 0100 0001 0000 0111 0000 0001 E 2 4 1 0 7 0 1 Order of transmission ---> Transmitted last Transmitted first

## Calculating the Length of Frame

To generate the CRC-16 for any message, the message length must be known. The length for all types of messages can be determined from the table below.

|         | Function Code and Name      | Query Message Length Less<br>CRC Code | Response Message Length<br>Less CRC Code |
|---------|-----------------------------|---------------------------------------|------------------------------------------|
| 0       |                             | Not Defined                           | Not Defined                              |
| 1       | Read Output Table           | 6                                     | 3 + 3rd byte *                           |
| 2       | Read Input Table            | 6                                     | 3 + 3rd byte *                           |
| 3       | Read Registers              | 6                                     | 3 + 3rd byte *                           |
| 4       | Read Registers              | 6                                     | 3 + 3td byte *                           |
| 5       | Force Single Output         | 6                                     | 6                                        |
| 6       | Preset Single Register      | 6                                     | 6                                        |
| 7       | Read Exception Status       | 2                                     | 3                                        |
| 8       | Loopback/Maintenance        | 6                                     | 6                                        |
| 9-14    |                             | Not Defined                           | Not Defined                              |
| 15      | Force Multiple Outputs      | 7 + 7th byte *                        | 6                                        |
| 16      | Preset Multiple Registers   | 7 + 7th byte *                        | 6                                        |
| 17      | Report Device Type          | 2                                     | 3 + 3rd byte                             |
| 18-64   |                             | Not Defined                           | Not Defined                              |
| 65      | Read Output Override Table  | 6                                     | 3 + 3rd byte *                           |
| 66      | Read Input Override Table   | 6                                     | 3 + 3rd byte *                           |
| 67      | Read Scratch Pad Memory     | 6                                     | 3 + 3rd byte *                           |
| 68      | Read User Logic             | 6                                     | 3 + 3rd byte *                           |
| 69      | Write Output Override Table | 7 + 7th byte *                        | 6                                        |
| 70      | Write Input Override Table  | 7 + 7th byte *                        | 6                                        |
| 71      | Write Scratch Pad Memory    | 7 + 7th byte *                        | 6                                        |
| 72-127  | · .                         | Not Defined                           | Not Defined                              |
| 128-255 |                             | Not Defined                           | 3                                        |

Table 6-2. RTU Message Length

\* The value of this byte is the number of bytes contained in the data being transmitted.

**RTU Communications Protocol** 

## GFK-0244

## **Table Addresses**

| Table | 6-3. | RTU | Table | Addresses |
|-------|------|-----|-------|-----------|
|       |      |     |       |           |

| Table Name   |      | Range                 | RTU Start Address (Point,<br>Register,Byte | Override Table Start<br>Point Adr. |  |
|--------------|------|-----------------------|--------------------------------------------|------------------------------------|--|
| Registers    |      | 1 to 16383 (16K)      | 0 to 16383                                 | N/A                                |  |
|              |      | 1 to 4096 (4K)        | 0 to 4095                                  | N/A                                |  |
| Inputs       |      |                       |                                            |                                    |  |
| -            | I1 + | 11 + 1 to $11 + 1024$ | 0 to 1023                                  | 0 to 1023                          |  |
|              | I2 + | 12 + 1 to $12 + 1024$ | 1024 to 2047                               | 1024 to 2047                       |  |
|              | I    | I1 to 1024            | 2048 to 3071                               | 2048 to 3071                       |  |
|              | 11 - | I1 - 1 to I1 - 512    | 3072 to 3583                               | N/A                                |  |
| Outputs      |      |                       |                                            |                                    |  |
| -            | 01 + | O1 + 1 to O1 + 1024   | 0 to 1023                                  | 0 to 1023                          |  |
|              | 02 + | O2 + 1 to $O2 + 1024$ | 1024 to 2047                               | 1024 to 2047                       |  |
|              | 0    | O1 to O1024           | 2048 to 3071                               | 2048 to 3071                       |  |
|              | 01 - | O1 - 1 to O1 - 512    | 3072 to 3583                               | 3072 to 3583                       |  |
|              | O2 - | O2 - 1 to O2 - 1024   | 4096 to 5119                               | 4096 to 5119                       |  |
| Scratch Pad  |      | 0 to 900H             | 0 to 900                                   | N/A                                |  |
| User Logic * | .    | 0 to 16127 (16K)      | 0 to 16127                                 | N/A                                |  |
| _            |      | 0 to 3839 (4K)        | 0 to 3839                                  | N/A                                |  |

\* The upper 256 words of the user logic memory type contains program and setup parameters, and is not available for program use.

,

## **Message Descriptions**

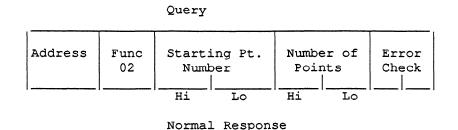
The following pages explain the format and fields for each RTU message. MESSAGE (01): **READ OUTPUT TABLE** FORMAT:

Query

| Address | Func<br>01 | Starti<br>Numb | ing Pt.<br>per | Numbe<br>Poir |    | Er:<br>Che |  |
|---------|------------|----------------|----------------|---------------|----|------------|--|
|         |            | <br>Hi         | <br>Lo         |               | Lo |            |  |

Normal Response

| Address | Func<br>01 | Byte<br>Count | Data | Error<br>Check |
|---------|------------|---------------|------|----------------|
|         |            |               | *    |                |


\* Data Length may vary

## QUERY:

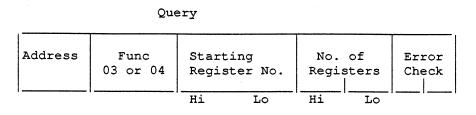
- The function code is 01.
- The <u>starting point number</u> is two bytes in length and may be any value less than the highest output point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first output point returned in the normal response to this request. Refer to Table 6-3 for the output point mapping.
- The <u>number of points</u> value is two bytes in length. It specifies the number of output points returned in the normal response. The sum of the starting point value and the number of points value must be less than or equal to the highest output point number available in the attached Series Five CPU. The high order byte of the starting point number and number of bytes fields is sent as the first byte. The low order byte is the second byte in each of these fields.

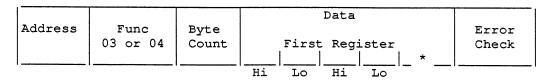
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the normal response following the byte count and preceeding the error check.
- The <u>data field</u> of the normal response is packed output status data. Each byte contains 8 output point values. The least significant bit (LSB) of the first byte contains the value of the output point whose number is equal to the starting point number plus one. The values of the output points are ordered by number starting with the LSB of the first byte of the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of 8, then the last data byte contains zeros in one to seven of its highest order bits.

# MESSAGE (02): **READ INPUT TABLE** FORMAT:



| 1       | r    |               |      | · /   |
|---------|------|---------------|------|-------|
| Address | Func | Byte          | Data | Error |
|         | 02   | Byte<br>Count |      | Check |
|         |      |               | *    |       |


\* Data Length May Vary


### QUERY:

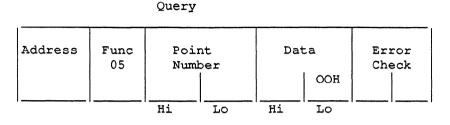
- The function code is 02.
- The <u>starting point number</u> is two bytes in length and may be any value less than the highest input point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first input point returned in the normal response to this request.
- The <u>number of points</u> value is two bytes in length. It specifies the number of input points returned in the normal response. The sum of the starting point value and the number of points value must be less than or equal to the highest input point number available in the attached Series Five CPU. The high order byte of the starting point number and number of bytes fields is sent as the first byte. The low order byte is the second byte in each of these fields. Refer to Table 6-3 for the input point mapping.

- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the normal response following the byte count and preceeding the error check.
- The <u>data field</u> of the normal response is packed input status data. Each byte contains 8 input point values. The least significant bit (LSB) of the first byte contains the value of the input point whose number is equal to the starting point number plus one. The values of the input points are ordered by number starting with the LSB of the first byte of the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of 8, then the last data byte contains zeros in one to seven of its highest order bits.

# MESSAGE (03, 04): **READ REGISTERS** FORMAT:






<sup>\*</sup> Data Length may vary

QUERY:

- The function code is equal to either 3 or 4.
- The <u>starting register</u> number is two bytes in length. The starting register number may be any value less than the highest register number available in the attached Series Five CPU. It is equal to one less than the number of the first register returned in the normal response to this request.
- The <u>number of registers</u> value is two bytes in length. It must contain a value from 1 to 125 inclusive. The sum of the starting register value and the number of registers value must be less than or equal to the highest register number available in the attached Series Five CPU. The high order byte of the starting register number and number of registers fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of these fields.

- The <u>byte count</u> is a binary number from 2 to 250 inclusive. It is the number of bytes in the normal response following the byte count and preceding the error check. Note that the byte count is equal to two times the number of registers returned in the response. A maximum of 250 bytes (125) registers is set so that the entire response can fit into one 256 byte data block.
- The registers are returned in the data field in order of number with the lowest number register in the first two bytes and the highest number register in the last two bytes of the datafield. The number of the first register in the data field is equal to the starting register number plus one. The high order byte is sent before the low order byte of each register.

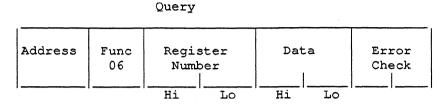
# MESSAGE (05): FORCE SINGLE OUTPUT FORMAT:

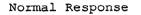


| Address | Func<br>05 | Point<br>Number                        |    |                                        |     | Er:<br>Che | 1 |
|---------|------------|----------------------------------------|----|----------------------------------------|-----|------------|---|
|         |            |                                        |    |                                        | оон |            |   |
|         |            | —————————————————————————————————————— | Lo | —————————————————————————————————————— |     | I          |   |

## QUERY:

- The function code is equal to 05.
- The <u>point number</u> field is two bytes in length. It may be any value less than the highest output point number available in the attached Series Five CPU. It is equal to one less than the number of the output point to be forced on or off. Refer to Table 6-3 for the output point mapping.
- The first byte of the <u>data</u> field is equal to either 0 or 255 (FFH). The output point specified in the point number field is to be forced off if the first data field byte is equal to 0. It is to be forced on if the first data field byte is equal to 255 (FFH). The second byte of the data field is always equal to zero.


## **RESPONSE:**


• The normal response to a force single output query is identical to the query.

## NOTE

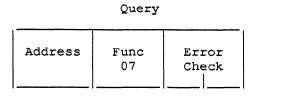
The force single output request is not an output override command. The output specified in this request is ensured to be forced to the value specified only at the beginning of one sweep of the Series Five PLC user logic.

# MESSAGE (06): **PRESET SINGLE REGISTER** FORMAT:





| Address | Func<br>06 | Register<br>Number |  | Data   |    | Error<br>Check |  |
|---------|------------|--------------------|--|--------|----|----------------|--|
|         |            | Hi                 |  | <br>Hi | Lo |                |  |


## QUERY:

- The function code is equal to 06.
- The <u>register number</u> field is two bytes in length. It may be any value less than the highest register available in the attached Series Five CPU. It is equal to one less than the number of the register to be preset.
- The <u>data</u> field is two bytes in length and contains the value that the register specified by the register number field is to be preset to. The first byte in the data field contains the high order byte of the preset value. The second byte in the data field contains the low order byte.

## **RESPONSE:**

• The normal response to a preset single register query is identical to the query.

MESSAGE (07): **READ EXCEPTION STATUS** FORMAT:



Normal Response

| Address | Func<br>07 | Data | Error<br>Check |
|---------|------------|------|----------------|
|         |            |      |                |

QUERY:

This query is a short form of request for the purpose of reading the first eight output points.

- An address of zero is not allowed as this cannot be a broadcast request.
- The function code is equal to 07.

## **RESPONSE:**

• The <u>data</u> field of the normal response is one byte in length and contains the states of output points O1 + 0001 through O1 + 0008. The output states are packed in order of number with output point one's state in the least significant bit and output point eight's state in the most significant bit.

# MESSAGE (08): LOOPBACK/MAINTENANCE (GENERAL) FORMAT:

Query

| Address | Func<br>08 | Diagnostic<br>Code<br>0, 1, or 4 | Data        | Error<br>Check |
|---------|------------|----------------------------------|-------------|----------------|
|         |            |                                  | DATA1 DATA2 |                |

| Address | Func<br>08 | Diagno<br>Coc<br>0, 1, |    | Dat<br>DATA1 |    | cor<br>eck |
|---------|------------|------------------------|----|--------------|----|------------|
|         |            | Hi                     | Lo | Hi           | Lo | <br>       |

## QUERY:

- The function code is equal to 8.
- The <u>diagnostic code</u> is two bytes in length. The high order byte of the diagnostic code is the first byte sent in the diagnostic code field. The low order byte is the second byte sent. The loopback/maintenance command is defined only for the diagnostic code equal to 0, 1, or 4. All other diagnostic codes are reserved.
- The <u>data</u> field is two bytes in length. The contents of the two data bytes are defined by the value of the diagnostic code.

## **RESPONSE:**

• See descriptions for individual diagnostic codes.

## **RTU Communications Protocol**

#### GFK-0244

## DIAGNOSTIC CODE (00): Return Query Data (Loopback/Maintenance)

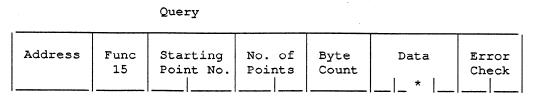
- A loopback/maintenance query with a diagnostic code equal to 0 is called a return query data request.
- The values of the two data field bytes in the query are arbitrary.
- The normal response is identical to the query.
- The values of the data bytes in the response are equal to the values sent in the query.

## DIAGNOSTIC CODE (01): Initiate Communication Restart (Loopback/Maintenance)

A loopback/maintenance request (query or broadcast) with a diagnostic code equal to 1 is called an Initiate Communication Restart request.

- This request disables the listen-only mode (enables responses to be sent when queries are received so that communications can be restarted).
- The value of the first byte of the <u>data</u> field (DATA1) must be 0 or FF. Any other value will cause an error response to be sent. The value of the second byte of the data field (DATA2) is always equal to 0.
- The normal response to an Initiate Communication Restart query is identical to the query.

## DIAGNOSTIC CODE (04): Force Listen-Only Mode (Loopback/Maintenance)


A loopback/maintenance request (query or broadcast) with a diagnostic code equal to 4 is called a Force Listen-Only Mode request.

- After receiving a Force Listen-Only mode request, the CCM device will go into the listen-only mode and will not send either normal or error responses to any queries. The listen-only mode is disabled when the CCM device receives an Initiate Communication Restart request, when the CCM device is powered up, or when switched off-line to on-line.
- Both bytes in the data field of a Force Listen-Only Mode request are equal to 0. The CCM device never sends a response to a Force Listen-Only Mode request.

#### NOTE

Upon power up, the CCM device disables the listen-only mode and is configured to continue sending responses to queries.

# MESSAGE (15): FORCE MULTIPLE OUTPUTS FORMAT:



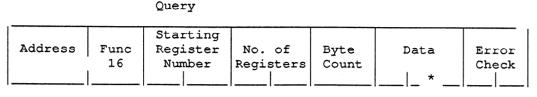
\* Data Length may vary

Normal Response

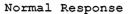
| Address | Func | Starting  | Number of | Error |
|---------|------|-----------|-----------|-------|
|         | 15   | Point No. | Points    | Check |
|         | l    |           | <u></u>   |       |

## QUERY:

- The value of the function code is 15.
- The starting point number is two bytes in length and may be any value less than the highest output point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first output point forced by this request. Refer to Table 6-3 for the output point mapping.
- The <u>number of points</u> value is two bytes in length. The sum of the starting point number and the number of points value must be less than or equal to the highest output point number available in the attached Series Five CPU. The high order byte of the starting point number and number of bytes fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of these fields.
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the force multiple outputs request.
- The <u>data</u> field is packed data containing the values that the outputs specified by the starting point number and the number of points fields are to be forced to. Each byte in the data field contains the values that eight output points are to be forced to. The least significant bit (LSB) of the first byte contains the value that the output point whose number is equal to the starting point number plus one is to be forced to. The values for the output points are ordered by number starting with the LSB of the first byte of the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of 8, then the last data byte contains zeros in one to seven of its highest order bits.


## **RESPONSE:**

• The description of the fields in the response are covered in the query description.


### NOTE

The force multiple outputs request is not an output override command. The outputs specified in this request are ensured to be forced to the values specified only at the beginning of one sweep of the Series Five PLC user logic.

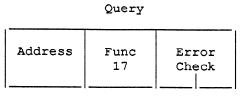
# MESSAGE (16): **PRESET MULTIPLE REGISTERS** FORMAT:



\* Data Length may vary



| Address | Func | Starting<br>Register | Number of | Error |  |
|---------|------|----------------------|-----------|-------|--|
| maarcoo | 16   | Number               | Registers | Check |  |
|         |      |                      | l         |       |  |


### QUERY:

- The value of the function code is 16.
- The <u>starting register number</u> is two bytes in length. The starting register number may be any value less than the highest register number available in the attached Series Five CPU. It is equal to one less than the number of the first register preset by this request.
- The <u>number of registers</u> value is two bytes in length. It must contain a value from 1 to 125 inclusive. The sum of the starting register number and the number of registers value must be less than or equal to the highest register number available in the attached Series Five CPU. The high order byte of the starting register number and number of registers fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of these fields.
- The <u>byte count</u> field is one byte in length. It is a binary number from 2 to 250 inclusive. It is equal to the number of bytes in the data field of the preset multiple registers request. Note that the byte count is equal to twice the value of the number of registers.
- The registers are returned in the <u>data</u> field in order of number with the lowest number register in the first two bytes and the highest number register in the last two bytes of the data field. The number of the first register in the data field is equal to the starting register number plus one. The high order byte is sent before the low order byte of each register.

## **RESPONSE:**

• The description of the fields in the response are covered in the query description.

# MESSAGE (17): **REPORT DEVICE TYPE** FORMAT:



Normal Response

| Address | Func<br>17 | Byte<br>Count<br>5 | Device<br>Type<br>50 | Slave<br>Run<br>Light |  |  | Er:<br>Che |  |  |
|---------|------------|--------------------|----------------------|-----------------------|--|--|------------|--|--|
|         |            |                    |                      |                       |  |  |            |  |  |

QUERY:

The Report Device Type query is sent by the master to a slave in order to learn what type of programmable control or other computer it is. All models of the Series Five PLC return a device type 50 when this request is received.

- An address of zero is not allowed as this cannot be a broadcast request.
- The function code is equal to 17.

## **RESPONSE:**

- The byte count field is one byte in length and is equal to 5.
- The device type field is one byte in length and is equal to 50.
- The <u>slave run light</u> field is one byte in length. The slave run light byte is equal to OFFH if the Series Five CPU is running. It is equal to 0 if the Series Five CPU is not running.
- The data field contains three bytes.

The first byte is called the system configuration byte and is shown below. Bits 4 and 5 indicate how many registers the attached Series Five CPU contains. Bits 1, 2, 3, 6, 7 and 8 are reserved for future use and are equal to 0.

The second data byte specifies the size of the attached Series Five PLC user logic memory. This value will be 4, 8, or 16 (decimal) which represents a logic memory size of 4K, 8K, or 16K. The third data byte will be 0.

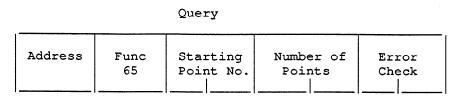
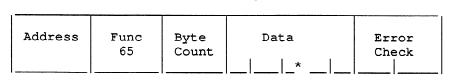




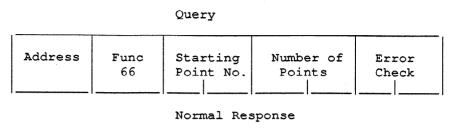

Figure 6-3. System Configuration (Byte 1)

# MESSAGE (65): **READ OUTPUT OVERRIDE TABLE** FORMAT:





Normal Response


## QUERY:

- The function code is equal to 65.
- The starting point number is two bytes in length and may be any value less than the highest output point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first output point whose override status is returned in the normal response to this request. Refer to Table 6-3.
- The <u>number of points</u> value is two bytes in length. It specifies the number of output points whose override status are returned in the normal response. The sum of the starting point number and the number of points values must be less than or equal to the highest output point number available in the attached Series Five CPU. The high order byte of the starting point number and number of points fields is sent as the first byte in head of these fields. The low order byte is the second byte in each of these fields.

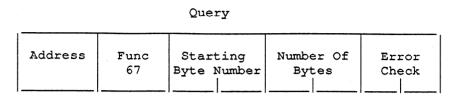
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The <u>data</u> field of the normal response is packed output override table data. Each byte contains the override status of eight output points. The least significant bit (LSB) of the first byte contains the override status of the output point whose number is equal to the starting point number plus one. The override status of the output points are ordered by number starting with the LSB of the first byte in the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of eight, then the last data byte contains zeros in one to seven of its highest order bits.

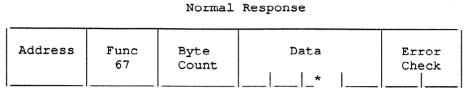
<sup>\*</sup> Data Length may vary

# MESSAGE (66): **READ INPUT OVERRIDE TABLE** FORMAT:



| Address | Func<br>66 | Byte<br>Count | Data | Error<br>Check |  |  |
|---------|------------|---------------|------|----------------|--|--|
|         |            |               |      |                |  |  |


<sup>\*</sup> Data Length may vary


### QUERY:

- The function code is equal to 66.
- The <u>starting point number</u> is two bytes in length and may be any value less than the highest input point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first input point whose override status is returned in the normal response to this request. Refer to Table 6-3 but notice that the I1 table does not have an override table associated with it.
- The <u>number of points</u> value is two bytes in length. It specifies the number of input points whose override status are returned in the normal response. The sum of the starting point number and the number of points values must be less than or equal to the highest input point number available in the attached Series Five CPU. The high order byte of the starting point number and number of points fields is sent as the first byte in head of these fields. The low order byte is the second byte in each of these fields.

- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The data field of the normal response is packed input override table data. Each byte contains the override status of eight input points. The least significant bit (LSB) of the first byte contains the override status of the input point whose number is equal to the starting point number plus one. The override status of the input points are ordered by number starting with the LSB of the first byte in the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of eight, then the last data byte contains zeros in one to seven of its highest order bits.

# MESSAGE (67): **READ SCRATCH PAD MEMORY** FORMAT:



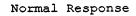


<sup>\*</sup> Data Length may vary

## QUERY:

- The function code is equal to 67.
- The <u>starting byte number</u> is two bytes in length and may be any value less than or equal to the highest scratch pad memory address available in the attached Series Five CPU. The starting byte number is equal to the address of the first scratch pad memory byte returned in the normal response to this request. Refer to Table 6-3.
- The <u>number of bytes</u> value is two bytes in length. It specifies the number of scratch pad memory locations (bytes) returned in the normal response. The sum of the starting byte number and the number of bytes values must be less than two plus the highest scratch pad memory address available in the attached Series Five CPU. The high order byte of the starting byte number and number of bytes fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of the fields.

## **RESPONSE:**


- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The <u>data</u> field contains the contents of the scratch pad memory requested by the query. The scratch pad memory bytes are sent in order of address. The contents of the scratch pad memory byte whose address is equal to the starting byte number is sent in the first byte of the data field. The contents of the scratch pad memory byte whose address is equal to one less than the sum of the starting byte number and number of bytes values is sent in the last byte of the data field.

## **REMARKS**:

Refer to the Series Five scratch pad memory map definition in Chapter 3, for more information.

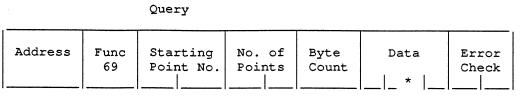
## MESSAGE (68): **READ USER LOGIC** FORMAT:





| Address | Func<br>68 | Byte<br>Count | Data | Error<br>Check |
|---------|------------|---------------|------|----------------|
|         |            |               | **   |                |

<sup>\*</sup> Data Length may vary


#### QUERY:

- The function code is equal to 68.
- The <u>starting address</u> is two bytes in length and may be any value less than or equal to the highest user logic memory address available in the attached Series Five CPU. The starting address is equal to the address of the first user logic memory word returned in the normal response to this request.
- The <u>number of words</u> value is two bytes in length. It contains a value from 1 to 125. It specifies the number of user logic memory words returned in the normal response. The sum of the starting address and the number of words values must be less than two plus the highest user logic memory address available in the attached Series Five CPU. The high order byte of the starting address and number of words fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of these fields.

#### **RESPONSE:**

- The byte count is a binary number from 2 to 250. It is the number of bytes in the data field of the normal response.
- The contents of the user logic memory are returned in the <u>data</u> field in order of address. The lowest address contents are returned in the first two bytes and the highest address contents are returned in the last two bytes. The address of the first user logic memory contents returned in the data field is equal to the starting address. The high order byte of each user logic memory address is sent before the low order byte of that address.

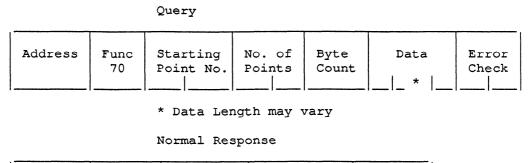
## MESSAGE (69): WRITE OUTPUT OVERRIDE TABLE FORMAT:



\* Data Length may vary

Normal Response

| Address | Func | Starting  | Number Of | Error |
|---------|------|-----------|-----------|-------|
|         | 69   | Point No. | Points    | Check |
|         |      |           |           |       |


#### QUERY:

- The value of the function code is 69.
- The <u>starting point number</u> is two bytes in length and may be any value less than the highest output point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first output point whose override status is returned in the normal response to this request. Refer to Table 6-3.
- The <u>number of points</u> value is two bytes in length. It specifies the number of output points whose override status are returned in the normal response. The sum of the starting point number and the number of points values must be less than or equal to the highest output point number available in the attached Series Five CPU. The high order byte of the starting point number and number of points fields is sent as the first byte in each of these fields.
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The <u>data</u> field of the normal response is packed output override table data. Each byte contains the override status of eight output points. The least significant bit (LSB) of the first byte contains the override status of the output point whose number is equal to the starting point number plus one. The override status of the output points are ordered by number starting with the LSB of the first byte in the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of eight, then the last data byte contains zeros in one to seven of its highest order bits.

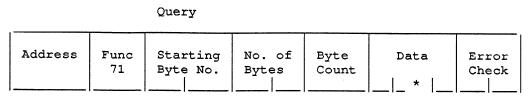
#### **RESPONSE:**

The description of the response fields are all covered in the description of the query fields.

## MESSAGE (70): WRITE INPUT OVERRIDE TABLE FORMAT:



| Address | Func | Starting  | Number Of | Error |
|---------|------|-----------|-----------|-------|
|         | 70   | Point No. | Points    | Check |
|         |      |           |           |       |


#### QUERY:

- The function code is equal to 70 for write input override table.
- The <u>starting point number</u> is two bytes in length and may be any value less than the highest input point number available in the attached Series Five CPU. The starting point number is equal to one less than the number of the first input point whose override status is returned in the normal response to this request. Refer to Table 6-3 but notice that the I1 table does not have an override table associated with it.
- The <u>number of points</u> value is two bytes in length. It specifies the number of input points whose override status are returned in the normal response. The sum of the starting point number and the number of points values must be less than or equal to the highest input point number available in the attached Series Five CPU. The high order byte of the starting point number and number of points fields is sent as the first byte in head of these fields. The low order byte is the second byte in each of these fields.
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The <u>data</u> field of the normal response is packed input override table data. Each byte contains the override status of eight input points. The least significant bit (LSB) of the first byte contains the override status of the input point whose number is equal to the starting point number plus one. The override status of the input points are ordered by number starting with the LSB of the first byte in the data field and ending with the most significant bit (MSB) of the last byte of the data field. If the number of points is not a multiple of eight, then the last data byte contains zeros in one to seven of its highest order bits.

#### **RESPONSE**:

The description of the response fields are covered in the description of the query fields.

## MESSAGE (71): WRITE SCRATCH PAD MEMORY FORMAT:



\* Data Length may vary

Normal Response

| Address | Func | Starting | No. of | Error |
|---------|------|----------|--------|-------|
|         | 71   | Byte No. | Bytes  | Check |
|         |      |          |        |       |

QUERY:

- The value of the function code is 71.
- The starting byte number, number of bytes, byte count, and data fields are described in the read scratch pad memory.
- The <u>starting byte number</u> is two bytes in length and may be any value less than or equal to the highest scratch pad memory address available in the attached Series Five CPU. The starting byte number is equal to the address of the first scratch pad memory byte returned in the normal response to this request.
- The <u>number of bytes</u> value is two bytes in length. It specifies the number of scratch pad memory locations (bytes) returned in the normal response. The sum of the starting byte number and the number of bytes values must be less than two plus the highest scratch pad memory address available in the attached Series Five CPU. The high order byte of the starting byte number and number of bytes fields is sent as the first byte in each of these fields. The low order byte is the second byte in each of the fields.
- The <u>byte count</u> is a binary number from 1 to 256 (0 = 256). It is the number of bytes in the data field of the normal response.
- The <u>data</u> field contains the contents of the scratch pad memory requested by the query. The scratch pad memory bytes are sent in order of address. The contents of the scratch pad memory byte whose address is equal to the starting byte number is sent in the first byte of the data field. The contents of the scratch pad memory byte whose address is equal to one less than the sum of the starting byte number and number of bytes values is sent in the last byte of the data field.

#### **RESPONSE:**

The description of the response fields are covered in the query description.

**REMARKS**:

#### **RTU Communications Protocol**

GFK-0244

Refer to the Scratch pad memory mapping in Chapter 3 for more information.

# CAUTION

Extreme care must be used when writing to any Scratch Pad location. It is strongly recommended that you consult GE Fanuc Field Service before doing this.

## **Communication Errors**

Serial link communication errors are divided into three groups:

- Invalid Query Message
- Serial Link Timeouts
- Invalid Transaction

#### Invalid Query Message

If a query is received with a bad CRC, no response is sent.

When the communications module receives a query addressed to itself, but cannot process the query, it sends one of the following error responses:

- Subcode
- Invalid Function Code (1)
- Invalid Address Field (2)
  Invalid Data Field (3)
- Invalid Data Field (3
- Query Processing Failure (4)

The format for an error response to a query is as follows.

| Address | Exception | Error   | Error |
|---------|-----------|---------|-------|
|         | Func      | Subcode | Check |
|         |           |         |       |

An <u>address</u> of 0 is not allowed as there is no response to a broadcast request. The <u>exception function</u>  $\frac{\text{code}}{\text{is equal}}$  to the sum of the function code of the received query, plus 128. The <u>error subcode</u> is equal to 1, 2, 3, or 4. The value of the subcode indicates the reason that the properly received query could not be processed.

#### **Invalid Function Code Error Response (1)**

An error response with a subcode of 1 is called an invalid function code error response. This response is sent by a slave if it receives a query whose function code is not equal to 1 through 8, 15, 16, 17, or 65 through 71.

#### **Invalid Address Error Response (2)**

An error response with a subcode of 2 is called an invalid address error response. This error response is sent in the following cases:

- 1. The starting point number and number of points fields specify output status points or input status points that are not available in the attached Series Five CPU (returned for function codes 1, 2, 15, 65, 66, 69, 70).
- 2. The starting register number and number of registers fields specify registers that are not available in the attached Series Five CPU (returned for function codes 3, 4, 16).
- 3. The point number field specifies an output status point not available in the attached Series Five CPU (returned for function code 5).

#### **RTU Communications Protocol**

#### GFK-0244

- 4. The register number field specifies a register not available in the attached Series Five CPU (returned for function code 6).
- 5. The diagnostic code is not equal to 0, 1, or 4 (returned for function code 8).
- 6. The starting byte number and number of bytes fields specify a scratch pad memory address that is not available in the attached Series Five CPU (returned for function code 67).
- 7. The starting byte number and number of bytes fields specify a write to a scratch pad memory address other than addresses 0, 1, 60H thru 7FH, and 5CH thru 5FH (returned for function code 71).
- 8. The starting address and number of words fields specify a user logic memory address not available in the attached Series Five CPU (returned for function code 68).

#### **Invalid Data Value Error Response (3)**

An error response with a subcode of 3 is called an invalid data value error response. This response is sent in the following case:

The first byte of the data field is not equal to 0 or 255 (FFH) or the second byte of the data field is not equal to 0 for the force single output request (function code 5) or the initiate communication restart request (function code 8, diagnostic code 1).

#### **Query Processing Failure Error Response (4)**

An error response with a subcode of 4 is called a query processing failure response. This error response is sent by a CCM device if it properly receives a query but communication between the associated Series Five CPU and the CCM device fails.

#### Serial Link Timeout

The only cause for a RTU device to timeout is if an interruption to a data stream of 3 character times occurs while a message is being received. If this occurs the message is considered to have terminated and no response will be sent to the master. There are certain timing considerations due to the characteristics of the slave that should be taken into account by the master.

After sending a query message, the master should wait the length of the turn-around time before assuming that the slave did not respond to its request. See Table 6-1 for turn-around times using the various function codes.

## **Invalid Transactions**

If an error occurs during transmission that does not fall into the category of an invalid query message or a serial link timeout, it is known as an invalid transaction. Types of errors causing an invalid transaction include:

- Bad CRC.
- The data length specified by the memory address field is longer than the data received.
- Framing or overrun errors.
- Parity errors.

If an error in this category occurs when a message is received by the CCM device, the CCM device does not return an error message. The CCM device treats the incoming message as though it was not intended for it.

# **Error Conditions**

The 8-segment Light-Emitting-Diode (LED) display, located on the front panel of the CCM module, can be used to determine the cause of many problems in the communication network. When the CCM detects an error, corresponding LEDs will be turned ON until the next query starts.

Refer to Chapter 2, for the CCM module front panel layout and designation of the 8-segment diagnostic display. Table 6-4 below shows the LED diagnostic display patterns for the CCM module in RTU mode. The function of the PWR and OK LEDs are the same for RTU as in the CCM2 mode. The MSTR LED has no function in RTU mode.

| Error Description                                     | Led Display (° = Light OFF, • = Light ON) |    |     |      |     |     |      |      |
|-------------------------------------------------------|-------------------------------------------|----|-----|------|-----|-----|------|------|
|                                                       | PWR                                       | ОК | NAK | TOUT | ENQ | HDR | DATA | MSTR |
| Invalid Function Code (1)                             |                                           |    | •   | 0    | ٠   | 0   | 0    |      |
| Invalid Address Field (2)                             |                                           |    | •   | 0    | 0   | •   | 0    |      |
| Invalid Data Field (3)                                |                                           |    | •   | 0    | 0   | 0   | •    |      |
| Query Processing Failure (4)                          |                                           |    | •   | 0    | 0   | 0   | 0    |      |
| Serial Link Timeout                                   |                                           |    | 0   | •    | o   | . 0 | 0    |      |
| Parity, Override, Framing Error (Invalid Transaction) |                                           |    | 0   | •    | ٠   | 0   | 0    |      |
| Too Much Data to Receive (Invalid Transaction)        |                                           |    | 0   | •    | 0   | •   | 0    |      |
| Bad CRC (Invalid Transaction)                         |                                           |    | 0   | •    | 0   | 0   | •    |      |

| Table 6-4. | RTU | Mode | LED | Diagnostic | Display |
|------------|-----|------|-----|------------|---------|
|            |     |      |     |            |         |

7-1

#### Overview

The Series Five<sup>®</sup> Communications Control Module (CCM) allows communications to and from the Series Five CPU via the CCM2 protocol. This permits communications with other CCM2 compatible systems such as Series One<sup>®</sup>, Series Three<sup>®</sup>, Series Six<sup>®</sup>, other Series Five CPUs and computers which have CCM2 drivers.

The CCM module also contains additional features which make it easy to communicate with non-CCM2 devices such as printers, bar code readers, and personal computers. It is not necessary to write a CCM2 driver in order to communicate with these types of devices. These additional features are collectively called "non-CCM modes". The 5-types of non-CCM modes are:

Mode 1 - Unformatted transmitting of registers.

Mode 2 - "Bar code" receiving (formatted with error check).\*

Mode 3 - Unformatted transmitting and/or "receiving to registers with CR LF terminator".

Mode 4 - Unformatted transmitting and/or "receiving with CR terminator".

Mode 5 - Unformatted transmitting, and/or "receiving with CR LF terminator", and compare on reception.

(\* Modes 3, 4, 5 may also be usable with bar code readers)

These non-CCM modes are initiated by setting the module configuration Dual-In-Line (DIP) switches for slave mode, with a CCM ID number above 90 (the normal limit for CCM slave devices). When a non-CCM mode is chosen, the normal CCM2 protocol is disabled. All of the above modes employ a user defined CPU register buffer as the source or destination of the data. Up to 8 Communication Control Modules (CCMs) may be used in the CPU's rack in these modes, as in the normal CCM mode.

Transmitting requires the use of the WR CCM instruction in the CPU user logic. The transmit source buffer is defined as part of the WR CCM instruction in user logic. The Logicmaster Five text entry mode makes entry of the "message" in the register table very easy. The special inputs (I1-81 through I1-208) used for normal CCM2 communications which indicate communications complete and error status are also functional in the non-CCM transmit modes.

Receiving is done transparently to the user program, and the receive buffer location is defined by special registers 4057-4064.

Up to 128 ASCII characters can be transmitted and received (depending on the mode), and transmission from the CCM module can be throttled either with the CTS hardware input line, or by transmitting XON / XOFF control characters to the CCM module.

## **Summary of Mode Types**

Each of the additional mode types (Mode 1 through Mode 5) used to communicate with non-CCM2 devices are explained in this section. Unformatted transmission / receive (Modes 3, 4 and 5) use Carriage Return (CR) and Line Feed (LF) or Carriage Return (CR) terminators.

NOTE

CR = "Carriage Return" (0DH)

LF = "Line Feed" (0AH)

#### Mode 1

Mode 1 is normally used to "dump" register information to a line printer, a display, or other "dumb" device. It can also be used to transmit data to a smart device like a personal computer (for example, a BASIC language INPUT statement can be used to read the data).

There is no automatic error checking done in this mode, so if data integrity is essential, some type of error checking must be built into the actual transmitted data. This is not normally required for most applications.

Data in the designated registers is transmitted exactly as it appears when the corresponding WR CCM instruction is executed in the CPUs user logic program. Control characters such as CR or LF can be transmitted in the same manner as printable characters, i.e. by entering their ASCII codes directly in the transmit buffer in the register table.

#### Mode 2

Mode 2 is used to read in data from bar code readers or other devices which utilize the mode 2 protocol as described later. The protocol used in this mode utilizes a block code error check, ACK/NAK responses, and automatic retries of data if the error check is unsuccessful. Some devices have this protocol already built in (you will need to consult the information which comes with your device). A driver for a computer can also be written which uses this protocol. This mode is normally used if your device already has this protocol, or if received data integrity is important and it is possible to modify the external transmitting device to use this protocol.

XON / XOFF and RTS /CTS flow control is not applicable in this mode.

#### Modes 3, 4, and 5

Modes 3,4 and 5 are used where 2-way communications is desired. These modes make communicating with an interactive operator terminal very easy. Modes 3,4 and 5 can also be used with a variety of bar code readers. These modes combine Mode 1 for transmitting, and a special receiving mode which requires almost no setup by the user. Data is transmitted without reformatting from the designated registers when the WR CCM command in user logic is executed. Data which is received by the serial port is accumulated until a CR LF sequence, or CR character is received (this depends on the mode). After the CR or CR LF terminator sequence is received, the accumulated data is stored in the receive buffer. The user logic program sets the first register in the receive buffer to 0 initially and after each received message has been processed. When the CCM module has stored the message in the buffer, it sets this register to 80H to indicate the receipt of the message.

Modes 3 and 4 differ only in the "terminator characters" which the CCM has been instructed to look for which define the end of the message (either CR LF for mode 3 or CR for mode 4).

Mode 5 requires that the received message be sent exactly the same twice in a row before the data is stored to the receive data buffer. The terminator sequence is CR LF for mode 5.

## Configuring the Mode Type

The non-CCM modes are initiated by setting the CCM module configuration Dual-In-Line (DIP) switches for slave mode, with a CCM ID number above 90 (the normal limit for CCM slave devices). When a non-CCM mode is chosen, the normal CCM2 protocol is disabled. All 5-modes employ a user defined CPU register buffer as the source or destination of the data. Up to 8 CCM modules may be used in the CPU's rack in these modes, as in the normal CCM mode.

#### Mode 1 - Unformatted Transmitting

1. Set the CCM module configuration DIP Switch for the following (CCM ID=96D).

 Table 7-1. Mode 1 - DIP Switch Setting

| SWITCH NO.<br>(SW1) | SWITCH | POSI | ITION  | SWITCH NO.<br>(SW2) | SWITCH POSITION         |
|---------------------|--------|------|--------|---------------------|-------------------------|
|                     |        |      | _      |                     |                         |
| 1                   | OFF    | 1    |        | 1                   | Set for desired         |
| 2                   | OFF    |      |        | 2                   | data rate.              |
| 3                   | OFF    |      | CCM    | 3                   | v                       |
| 4                   | OFF    |      | ID=96D | 4                   | OFF = No Parity, ON=Odd |
| 5                   | OFF    |      |        | 5                   | OFF                     |
| 6                   | ON 32  | 2    |        | 6                   | OFF                     |
| 7                   | ON 64  | 4 v  |        | 7                   | OFF                     |
| 8                   | OFF    |      |        | 8                   | OFF                     |
| 9                   | OFF    |      |        | 9                   | OFF                     |

- 2. Set the receiving device for odd or no parity, 8 bits, 1 stop bit, desired data rate (to correspond with the CCM Master settings).
- 3. Store the desired ASCII characters in the register table (e.g., R2000-R2004). The Logicmaster Five text entry mode in the register table display is very useful for this.
- 4. Insert the following instruction in your CPU user logic program:

R0100 +-----[BLOCK MOVE ]-----() 3,1,1,1,5,2000,0 I0001 I1-87 R0100 +-----][-----]/[------[WR CCM ]------()

This example uses R100-105 as the WR CCM command area, and R2000 as the start of the data buffer. Reserved input, I1-87, is used to ensure that the previous communications request has been completed before starting the new one. (Explanation of register assignment as follows, also refer to Table 7-7)

| 3) |
|----|
|    |
| 5  |

5. Fill the registers shown with the message to be transmitted. Maximum message size is 64 registers (128 characters).

| R2000 | = | 4241H | "BA"          |
|-------|---|-------|---------------|
| R2001 | = | 4443H | "DC"          |
| R2002 | = | 3231H | <b>''21''</b> |
| R2003 | = | 1013H | ''43''        |
| R2004 | = | 1013H | LF CR         |

When displayed in Logicmaster Five text mode, and as printed on a printer or serial display the message will read:

"ABCD1234"

If entered in Logicmaster Five text mode, the message is entered from left to right as it would normally be read.

6. If the receiving device needs to halt transmission, an XOFF character should be sent to the CCM module, or CTS should be set to false by the receiving device.

#### Mode 2 - Bar Code Reader Receiving

The device to be connected to the CCM module must be able to transmit data using the following protocol. This can be a bar code reader, or any other device which can be programmed to send the following sequence :

```
STX, n BYTES OF DATA, ETX, BCC
Where STX = 02H
ETX = 03H
n = 125 bytes maximum
BCC = "exclusive or" of STX - ETX (inclusive) for CCM ID = 97D.
= "exclusive or" of data - ETX (inclusive) for CCM ID = 98D.
and parity = even, character length = 7 bits.
```

If the external device sends the correct checksum (BCC) for the data, the CCM module will respond with an ACK character. If the BCC does not correlate with the data, a NAK will be sent to the transmitting device.

Data will be stored in the register area which starts at the register pointed to by R4057-4064 (depending on the slot in which the CCM module is installed -R4057 corresponds to slot 0).

The first register in the receive buffer area contains a status flag which is used to indicate to the user logic program that a new complete transmission has been received. If this register contains an 80H, a new transmission has been received, and the user logic program should use the information in the rest of the buffer area, or copy it to another area. If the register contains a 0, then a new transmission from the remote device has not been completed. The user logic should set this register to 0 after using the new data, or copying it for future evaluation.

XON / XOFF and RTS / CTS flow control is not used in this mode.

1. Set the CCM module configuration DIP switches for the following:

CCM ID = 97D for BCC calculated from STX-ETX, or (\* See Table 7-2, SW1)

CCM ID = 98D for BCC calculated from DATA-ETX. (\*\* See Table 7-2, SW1)

Table 7-2. Mode 2 - DIP Switch Setting

| SWITCH NO.<br>(SW1) | SWITCH POSIT  | ION     | SWITCH NO.<br>(SW2) | SWI | ICH POSITION        |
|---------------------|---------------|---------|---------------------|-----|---------------------|
|                     |               |         |                     |     |                     |
| 1                   | ON for 97D    |         | 1                   |     | Set for desired     |
| 2                   | ON for 98D    | CCM ID. | 2                   |     | data rate.          |
| 3                   | OFF           |         | 3                   | v   |                     |
| 4                   | OFF           | ID = *  | 4                   | OFF | = No Parity, ON=Odd |
| 5                   | OFF           | or      | 5                   | OFF |                     |
| 6                   | ON for both   | ID = ** | 6                   | OFF |                     |
| 7                   | ON for both V | v I     | 7                   | OFF |                     |
| 8                   | OFF           |         | 8                   | OFF |                     |
| 9                   | OFF           |         | 9                   | OFF |                     |

- 2. Set receiving buffer pointer (R4057-4064) with the register number of the start of the receive buffer. Refer to Table 7-7
- 3. Await the receipt of a message.

For example, if your CCM module is in slot 2, and you put 01234 in register 4059, then set R01234 to 0 from user logic:

After a message is received, the register contents will be as follows:

R01234 = 0080H (message received) R01235 = 4802H (''H'' + STX) R01236 = 2049H ('' I'') R01237 = YY03H (YY=BCC, 03=ETX)

The received message is "HI".

4. The user logic program must use this message or copy it away, then set R01234 to 0 so that the CCM module will allow another message to be received.

#### Mode 3 - Unformatted Transmitting, and/or "Receiving with CR LF Terminator"

This mode is enabled by setting the DIP switches for CCM ID, to 102 decimal. Transmitting is accomplished exactly as for Mode 1 except for the DIP switch settings. To set up receiving in Mode 3, perform the following steps:

1. Set the CCM module configuration DIP switches for the following (CCM ID=102D).

| SWITCH NO.<br>(SW1) | SWITC: | H POS | SITION  | SWITCH NO.<br>(SW2) | SWITCH POSITION         |
|---------------------|--------|-------|---------|---------------------|-------------------------|
|                     |        |       |         |                     |                         |
| 1                   | OFF    |       |         | 1                   | Set for desired         |
| 2                   | ON     | 2     |         | 2                   | data rate.              |
| 3                   | ON     | 4     | CCM     | 3                   | v                       |
| 4                   | OFF    |       | ID=102D | 4                   | OFF = No Parity, ON=Odd |
| 5                   | OFF    |       |         | 5                   | OFF                     |
| 6                   | ON     | 32    |         | 6                   | OFF                     |
| 7                   | ON     | 64 1  | 7       | 7                   | OFF                     |
| 8                   | OFF    |       |         | 8                   | OFF                     |
| 9                   | OFF    |       |         | 9                   | OFF                     |
|                     |        |       |         |                     |                         |

Table 7-3. Mode 3 - DIP Switch Setting

- 2. Set receiving buffer pointer (R4057-4064) with the register number of the start of the receive buffer. Refer to Table 7-7
- 3. Await the receipt of a message.

For example, if your CCM module is in slot 2, and you put 01234 in register 4059, then set R01234 to 0 from user logic.

After a message is received, the register contents will be as follows:

| R01234 | = | 0080H | (message received) |
|--------|---|-------|--------------------|
| R01235 | = | 4948H | ("'HI'')           |
| R01236 | = | 3520H | ("5")              |
| R01237 | = | 1013H | (LF CR)            |

The received message is "HI 5".

4. The user logic program must use this message or copy it away, then set R01234 to 0 so that another message can be received.

7-6

# Mode 4 - Unformatted Transmitting, and/or "Receiving with CR Terminator"

Set the CCM module configuration DIP switches for the following (CCM ID=101D).

| Table | 7-4. | Mode | 4 |  | DIP | Switch | Setting |
|-------|------|------|---|--|-----|--------|---------|
|-------|------|------|---|--|-----|--------|---------|

| SWITCH NO.<br>(SW1) | SWIT | СН РС | SITION  | SWITCH NO.<br>(SW2) | SWITCH POSITION         |
|---------------------|------|-------|---------|---------------------|-------------------------|
|                     |      | -     |         |                     |                         |
| 1                   | ON   | 1     |         | 1                   | Set for desired         |
| 2                   | OFF  |       |         | 2                   | data rate.              |
| 3                   | ON   | 4     | CCM     | 3                   | v                       |
| 4                   | OFF  |       | ID=101D | 4                   | OFF = No Parity, ON=Odd |
| 5                   | OFF  |       |         | 5                   | OFF                     |
| 6                   | ON   | 32    |         | 6                   | OFF                     |
| 7                   | ON   | 64    | v       | 7                   | OFF                     |
| 8                   | OFF  |       |         | 8                   | OFF                     |
| 9                   | OFF  |       |         | 9                   | OFF                     |

Transmitting is accomplished exactly the same as for mode 1 except for these DIP switch settings. Receiving in mode 4 is identical to receiving in mode 3, except that the message is terminated with a CR rather than CR LF sequence.

# Mode 5 - Unformatted Transmitting, and/or "Receiving with CR LF Terminator", and Compare on Reception

Operation in mode 5 is identical to mode 3 except that the DIP switches are set to 100D, and the received message from the external device must be received twice (with no differences) before it is stored, and the status register indicates 80H.

Set the CCM module configuration DIP switches for the following (CCM ID=100D).

| SWITCH NO.<br>(SW1) | SWITC | CH POS | SITION  | SWITCH NO.<br>(SW2) | SWITCH POSITION         |
|---------------------|-------|--------|---------|---------------------|-------------------------|
|                     |       |        |         |                     |                         |
| 1                   | OFF   |        |         | 1                   | Set for desired         |
| 2                   | OFF   |        |         | 2                   | data rate.              |
| 3                   | ON    | 4      | CCM     | 3                   | v                       |
| 4                   | OFF   |        | ID=101D | 4                   | OFF = No Parity, ON=Odd |
| 5                   | OFF   |        |         | 5                   | OFF                     |
| 6                   | ON    | 32     |         | 6                   | OFF                     |
| 7                   | ON    | 64 5   | 7       | 7                   | OFF                     |
| 8                   | OFF   |        |         | 8                   | OFF                     |
| 9                   | OFF   |        |         | 9                   | OFF                     |

#### Table 7-5. Mode 5 - DIP Switch Setting

## **Additional Protocol Summary**

| Mode | T/R | CCM<br>ID | RCV Term<br>Sequence | BCC          | Received Data Format                                                       |
|------|-----|-----------|----------------------|--------------|----------------------------------------------------------------------------|
| 1    | Т   | 96D       | N/A                  | N/A          | N/A                                                                        |
| 2A   | R   | 97D       | N/A                  | STX-<br>ETX  | STATUS, STX, DATA1DATA124, ETX, BCC (followed by ACK/NAK response)         |
| 2B   | R   | 98D       | N/A                  | DATA-<br>ETX | STATUS, STX, DATA1DATA124, ETX, BCC (followed by ACK/NAK response)         |
| 3    | T/R | 102D      | CR-LF                | N/A          | STATUS, DATA1DATA125, CR, LF                                               |
| 4    | T/R | 101D      | CR                   | N/A          | STATUS, DATA1DATA126, CR                                                   |
| 5    | T/R | 100D      | CR-LF                | N/A          | STATUS, DATA1DATA125, CR, LF (stored after being received the same twice). |

Table 7-6. Additional Protocol Summary

- Transmit data format is user defined.
- All receive data is assumed to be ASCII coded. XON / XOFF control characters received will affect transmissions from the CCM module. Transmitted control characters may affect receiving device.
- LF = "Line Feed" (0AH) • CR = "Carriage Return" (0DH),
- When transmitting, CTS is checked after RTS is activated by the CCM module. CTS = "false" will inhibit transmissions from the CCM module.
- When receiving, the first receive register should be set to 0 after reading the message. The CCM module will set the register to 80H when a new message has been stored in the buffer.
- All modes use 8 data bits, 1 start/stop bit, odd or no parity (except Mode 2 which is even parity).

-----] [----RX

RX+1

RX+2

RX+3

=

1

| CPU<br>Base<br>Slot | RCV Buffer<br>Pointer |                |
|---------------------|-----------------------|----------------|
|                     |                       |                |
| 0                   | R4057                 | Communication  |
| 1                   | R4058                 | error numbers  |
| 2                   | R4059                 | will appear in |
| 3                   | R4060                 | R4078 - 4080   |
| 4                   | R4061                 | if applicable. |
| 5                   | R4062                 |                |
| 6                   | R4063                 |                |
| 7                   | R4064                 |                |

Table 7-7. Setup and I

| References                  |   |  |  |  |  |  |  |
|-----------------------------|---|--|--|--|--|--|--|
| Transmit Setup              |   |  |  |  |  |  |  |
|                             |   |  |  |  |  |  |  |
| RX                          |   |  |  |  |  |  |  |
| [ WR CCM ]                  |   |  |  |  |  |  |  |
| = Slot Number of CCM Module | 1 |  |  |  |  |  |  |
| = 1                         |   |  |  |  |  |  |  |
| = 1                         |   |  |  |  |  |  |  |

| RX+4 | = | Number of Registers to Send   |
|------|---|-------------------------------|
| RX+5 | = | Start of Transmit Buffer Reg. |
|      |   |                               |

Receive setup - set receive buffer pointer as required.



# Appendix A CCM Memory Types

An expanded listing of the Communications Control Module (CCM) memory types is provided in this appendix. This expanded listing includes the memory mapping for:

- Types 2 and 4 (Inputs/Byte) -- Table A-1
- Types 3 and 5 (Outputs/Byte) -- Table A-2

| Target Decimal | Address<br>Hexadecimal | Table Reference   | Target<br>Decimal | Address<br>Hexadeci |
|----------------|------------------------|-------------------|-------------------|---------------------|
| 1              | 1                      | I1+0001 - I1+0008 | 41                | 29                  |
| 2              | 2                      | I1+0009 - I1+0016 | 42                | 2A                  |
| 3              | 3                      | I1+0017 - I1+0024 | 43                | 2B                  |
| 4              | 4                      | I1+0025 - I1+0032 | 44                | 2C                  |
| 5              | 5                      | I1+0033 - I1+0040 | 45                | 2D                  |
| 6              | 6                      | I1+0041 - I1+0048 | 46                | 2E                  |
| 7              | 7                      | I1+0049 - I1+0056 | 47                | 2F                  |
| 8              | 8                      | I1+0057 - I1+0064 | 48                | 30                  |
| 9              | 9                      | I1+0065 - I1+0072 | 49                | 31                  |
| 10             | A                      | I1+0073 - I1+0080 | 50                | 32                  |
| 11             | B                      | I1+0081 - I1+0088 | 51                | 33                  |
| 12             | C                      | I1+0089 - I1+0096 | 52                | 34                  |
| 13             | D                      | I1+0097 - I1+0104 | 53                | 35                  |
| 14             | E                      | I1+0105 - I1+0112 | 54                | 36                  |
| 15             | F                      | I1+0113 - I1+0120 | 55                | 37                  |
| 16             | 10                     | I1+0121 - I1+0128 | 56                | 38                  |
| 17             | 11                     | I1+0129 - I1+0136 | 57                | 39                  |
| 18             | 12                     | I1+0137 - I1+0144 | 58                | 3A                  |
| 19             | 13                     | I1+0145 - I1+0152 | 59                | 3B                  |
| 20             | 14                     | I1+0153 - I1+0160 | 60                | 3C                  |
| 21             | 15                     | I1+0161 - I1+0168 | 61                | 3D                  |
| 22             | 16                     | I1+0169 - I1+0176 | 62                | 3E                  |
| 23             | 17                     | I1+0177 - I1+0184 | 63                | 3F                  |
| 24             | 18                     | I1+0185 - I1+0192 | 64                | 40                  |
| 25             | 19                     | I1+0193 - I1+0200 | 65                | 41                  |
| 26             | 1A                     | I1+0201 - I1+0208 | 66                | 42                  |
| 27             | 1B                     | I1+0209 - I1+0216 | 67                | 43                  |
| 28             | 1C                     | I1+0217 - I1+0224 | 68                | 44                  |
| 29             | 1D                     | I1+0225 - I1+0232 | 69                | 45                  |
| 30             | 1E                     | I1+0233 - I1+0240 | 70                | 46                  |
| 31             | 1F                     | I1+0241 - I1+0248 | 71                | 47                  |
| 32             | 20                     | I1+0249 - I1+0256 | 72                | 48                  |
| 33             | 21                     | I1+0257 - I1+0264 | 73                | 49                  |
| 34             | 22                     | I1+0265 - I1+0272 | 74                | 4A                  |
| 35             | 23                     | I1+0273 - I1+0280 | 75                | 4B                  |
| 36             | 24                     | I1+0281 - I1+0288 | 76                | 4C                  |
| 37             | 25                     | I1+0289 - I1+0296 | 77                | 4D                  |
| 38             | 26                     | I1+0297 - I1+0304 | 78                | 4E                  |
| 39             | 27                     | I1+0305 - I1+0312 | 79                | 4F                  |
| 40             | 28                     | I1+0313 - I1+0320 | 80                | 50                  |

#### Table A-1. CCM Memory Types 2 and 4 (Inputs/Byte)

| Target                                       | Adress                                       | Table Reference                                                                                                                                                                                                                                |
|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                      | Hexadecimal                                  | Table Reference                                                                                                                                                                                                                                |
| 41                                           | 29                                           | I1+0321 - I1+0328                                                                                                                                                                                                                              |
| 42                                           | 2A                                           | I1+0329 - I1+0336                                                                                                                                                                                                                              |
| 43                                           | 2B                                           | I1+0337 - I1+0344                                                                                                                                                                                                                              |
| 44                                           | 2C                                           | I1+0345 - I1+0352                                                                                                                                                                                                                              |
| 45                                           | 2D                                           | I1+0353 - I1+0360                                                                                                                                                                                                                              |
| 46                                           | 2E                                           | I1+0361 - I1+0368                                                                                                                                                                                                                              |
| 47                                           | 2F                                           | I1+0369 - I1+0376                                                                                                                                                                                                                              |
| 48                                           | 30                                           | I1+0377 - I1+0384                                                                                                                                                                                                                              |
| 49                                           | 31                                           | I1+0385 - I1+0392                                                                                                                                                                                                                              |
| 50                                           | 32                                           | I1+0393 - I1+0400                                                                                                                                                                                                                              |
| 51                                           | 33                                           | I1+0401 - I1+0408                                                                                                                                                                                                                              |
| 52                                           | 34                                           | I1+0409 - I1+0416                                                                                                                                                                                                                              |
| 53                                           | 35                                           | I1+0417 - I1+0424                                                                                                                                                                                                                              |
| 54                                           | 36                                           | I1+0425 - I1+0432                                                                                                                                                                                                                              |
| 55                                           | 37                                           | I1+0433 - I1+0440                                                                                                                                                                                                                              |
| 56                                           | 38                                           | I1+0441 - I1+0448                                                                                                                                                                                                                              |
| 57                                           | 39                                           | I1+0449 - I1+0456                                                                                                                                                                                                                              |
| 58                                           | 3A                                           | I1+0457 - I1+0464                                                                                                                                                                                                                              |
| 59                                           | 3B                                           | I1+0465 - I1+0472                                                                                                                                                                                                                              |
| 60                                           | 3C                                           | I1+0473 - I1+0480                                                                                                                                                                                                                              |
| 61                                           | 3D                                           | I1+0481 - I1+0488                                                                                                                                                                                                                              |
| 62                                           | 3E                                           | I1+0489 - I1+0496                                                                                                                                                                                                                              |
| 63                                           | 3F                                           | I1+0497 - I1+0504                                                                                                                                                                                                                              |
| 64                                           | 40                                           | I1+0505 - I1+0512                                                                                                                                                                                                                              |
| 65                                           | 41                                           | I1+0513 - I1+0520                                                                                                                                                                                                                              |
| 66                                           | 42                                           | I1+0521 - I1+0528                                                                                                                                                                                                                              |
| 67                                           | 43                                           | I1+0529 - I1+0536                                                                                                                                                                                                                              |
| 68                                           | 44                                           | I1+0537 - I1+0544                                                                                                                                                                                                                              |
| 69                                           | 45                                           | I1+0545 - I1+0552                                                                                                                                                                                                                              |
| 70                                           | 46                                           | I1+0553 - I1+0560                                                                                                                                                                                                                              |
| 71                                           | 47                                           | I1+0561 - I1+0568                                                                                                                                                                                                                              |
| 72                                           | 48                                           | I1+0569 - I1+0576                                                                                                                                                                                                                              |
| 73<br>74<br>75<br>76<br>77<br>78<br>79<br>80 | 49<br>4A<br>4B<br>4C<br>4D<br>4E<br>4F<br>50 | $\begin{array}{r} 11 + 0577 &- 11 + 0584 \\ 11 + 0585 &- 11 + 0592 \\ 11 + 0593 &- 11 + 0600 \\ 11 + 0601 &- 11 + 0608 \\ 11 + 0609 &- 11 + 0616 \\ 11 + 0617 &- 11 + 0624 \\ 11 + 0625 &- 11 + 0632 \\ 11 + 0633 &- 11 + 0640 \\ \end{array}$ |

## GFK-0244

| Target     | Address        | Table Reference                                             |
|------------|----------------|-------------------------------------------------------------|
| Decimal    | Hexadecimal    |                                                             |
| 81         | 51             | I1+0641 - I1+0648                                           |
| 82         | 52             | I1+0649 - I1+0656                                           |
| 83         | 53             | I1+0657 - I1+0664                                           |
| 84         | 54             | I1+0665 - I1+0672                                           |
| 85         | 55             | I1+0673 - I1+0680                                           |
| 86         | 56             | I1+0681 - I1+0688                                           |
| 87         | 57             | I1+0689 - I1+0696                                           |
| 88         | 58             | I1+0697 - I1+0704                                           |
| 89         | 59             | I1+0705 - I1+0712                                           |
| 90         | 5A             | I1+0713 - I1+0720                                           |
| 91         | 5B             | I1+0721 - I1+0728                                           |
| 92         | 5C             | I1+0729 - I1+0736                                           |
| 93         | 5D             | I1+0737 - I1+0744                                           |
| 94         | 5E             | I1+0745 - I1+0752                                           |
| 95         | 5F             | I1+0753 - I1+0760                                           |
| 96         | 60             | I1+0761 - I1+0768                                           |
| 97         | 61             | I1+0769 - I1+0776                                           |
| 98         | 62             | I1+0777 - I1+0784                                           |
| 99         | 63             | I1+0785 - I1+0792                                           |
| 100        | 64             | I1+0793 - I1+0800                                           |
| 101        | 65             | I1+0801 - I1+0808                                           |
| 102        | 66             | I1+0809 - I1+0816                                           |
| 103        | 67             | I1+0817 - I1+0824                                           |
| 104        | 68             | I1+0825 - I1+0832                                           |
| 105        | 69             | I1+0833 - I1+0840                                           |
| 106        | 6A             | I1+0841 - I1+0848                                           |
| 107        | 6B             | I1+0849 - I1+0856                                           |
| 108        | 6C             | I1+0857 - I1+0864                                           |
| 109        | 6D             | I1+0865 - I1+0872                                           |
| 110        | 6E             | I1+0873 - I1+0880                                           |
| 111        | 6F             | I1+0881 - I1+0888                                           |
| 112        | 70             | I1+0889 - I1+0896                                           |
| 113        | 71             | I1+0897 - I1+0904                                           |
| 114        | 72             | I1+0905 - I1+0912                                           |
| 115        | 73             | I1+0913 - I1+0920                                           |
| 115        | 73             | I1+0915 - I1+0920                                           |
| 116        | 74             | I1+0921 - I1+0928                                           |
| 117        | 75             | I1+0929 - I1+0936                                           |
| 118        | 76             | I1+0937 - I1+0944                                           |
| 119        | 77             | I1+0945 - I1+0952                                           |
| 120        | 78             | I1+0953 - I1+0960                                           |
| 121        | 79             | I1+0961 - I1+0968                                           |
| 122        | 7A             | I1+0969 - I1+0976                                           |
| 123        | 7B             | I1+0977 - I1+0984                                           |
| 124        | 7C             | I1+0985 - I1+0992                                           |
| 125<br>126 | 7D<br>7E       | I1+0983 - I1+0992<br>I1+0993 - I1+1000<br>I1+1001 - I1+1008 |
| 127        | 7F             | I1+1009 - I1+1016                                           |
| 128        | 80             | I1+1017 - I1+1024                                           |
| 129<br>130 | 81<br>82<br>82 | I2+0001 - I2+0008<br>I2+0009 - I2+0016<br>I2+0017 I2+0024   |
| 131        | 83             | I2+0017 - I2+0024                                           |
| 132        | 84             | I2+0025 - I2+0032                                           |
| 133        | 85             | I2+0033 - I2+0040                                           |
| 134        | 86             | 12+0041 - 12+0048                                           |
| 135        | 87             | 12+0049 - 12+0056                                           |
| 136        | 88             | I2+0057 - I2+0064                                           |

Υ.

| Target Decimal | Address<br>Hexadecimal | Table Reference   |
|----------------|------------------------|-------------------|
| 137            | 89                     | I2+0065 - I2+0072 |
| 138            | 8A                     | I2+0073 - I2+0080 |
| 139            | 8B                     | I2+0081 - I2+0088 |
| 140            | 8C                     | I2+0089 - I2+0096 |
| 141            | 8D                     | I2+0097 - I2+0104 |
| 142            | 8E                     | I2+0105 - I2+0112 |
| 143            | 8F                     | I2+0113 - I2+0120 |
| 144            | 90                     | I2+0121 - I2+0128 |
| 145            | 91                     | I2+0129 - I2+0136 |
| 146            | 92                     | I2+0137 - I2+0144 |
| 147            | 93                     | I2+0145 - I2+0152 |
| 148            | 94                     | I2+0153 - I2+0160 |
| 149            | 95                     | I2+0161 - I2+0168 |
| 150            | 96                     | I2+0169 - I2+0176 |
| 151            | 97                     | I2+0177 - I2+0184 |
| 152            | 98                     | I2+0185 - I2+0192 |
| 153            | 99                     | I2+0193 - I2+0200 |
| 154            | 9A                     | I2+0201 - I2+0208 |
| 155            | 9B                     | I2+0209 - I2+0216 |
| 156            | 9C                     | I2+0217 - I2+0224 |
| 157            | 9D                     | I2+0225 - I2+0232 |
| 158            | 9E                     | I2+0233 - I2+0240 |
| 159            | 9F                     | I2+0241 - I2+0248 |
| 160            | A0                     | I2+0249 - I2+0256 |
| 161            | A1                     | I2+0257 - I2+0264 |
| 162            | A2                     | I2+0265 - I2+0272 |
| 163            | A3                     | I2+0273 - I2+0280 |
| 164            | A4                     | I2+0281 - I2+0288 |
| 165            | A5                     | I2+0289 - I2+0296 |
| 166            | A6                     | I2+0297 - I2+0304 |
| 167            | A7                     | I2+0305 - I2+0312 |
| 168            | A8                     | I2+0313 - I2+0320 |
| 169            | A9                     | I2+0321 - I2+0328 |
| 170            | AA                     | I2+0329 - I2+0336 |
| 171            | AB                     | I2+0337 - I2+0344 |
| 172            | AC                     | I2+0345 - I2+0352 |
| 173            | AD                     | I2+0353 - I2+0360 |
| 174            | AE                     | I2+0361 - I2+0368 |
| 175            | AF                     | I2+0369 - I2+0376 |
| 176            | B0                     | I2+0377 - I2+0384 |
| 177            | B1                     | I2+0385 - I2+0392 |
| 178            | B2                     | I2+0393 - I2+0400 |
| 179            | B3                     | I2+0401 - I2+0408 |
| 180            | B4                     | I2+0409 - I2+0416 |
| 181            | B5                     | I2+0417 - I2+0424 |
| 182            | B6                     | I2+0425 - I2+0432 |
| 183            | B7                     | I2+0433 - I2+0440 |
| 184            | B8                     | I2+0441 - I2+0448 |
| 185            | B9                     | I2+0449 - I2+0456 |
| 186            | BA                     | I2+0457 - I2+0464 |
| 187            | BB                     | I2+0465 - I2+0472 |
| 188            | BC                     | I2+0473 - I2+0480 |
| 189            | BD                     | I2+0481 - I2+0488 |
| 190            | BE                     | I2+0489 - I2+0496 |
| 191            | BF                     | I2+0497 - I2+0504 |
| 192            | C0                     | I2+0505 - I2+0512 |

| Target                                               | Address                                      | Table Reference                                                                                                                                                                                                                                |
|------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                              | Hexadecimal                                  | Table Reference                                                                                                                                                                                                                                |
| 193                                                  | C1                                           | I2+0513 - I2+0520                                                                                                                                                                                                                              |
| 194                                                  | C2                                           | I2+0521 - I2+0528                                                                                                                                                                                                                              |
| 195                                                  | C3                                           | I2+0529 - I2+0536                                                                                                                                                                                                                              |
| 196                                                  | C4                                           | I2+0537 - I2+0544                                                                                                                                                                                                                              |
| 197                                                  | C5                                           | I2+0545 - I2+0552                                                                                                                                                                                                                              |
| 198                                                  | C6                                           | I2+0553 - I2+0560                                                                                                                                                                                                                              |
| 199                                                  | C7                                           | I2+0561 - I2+0568                                                                                                                                                                                                                              |
| 200                                                  | C8                                           | I2+0569 - I2+0576                                                                                                                                                                                                                              |
| 201<br>202<br>203<br>204<br>205<br>206<br>207<br>208 | C9<br>CA<br>CB<br>CC<br>CD<br>CE<br>CF<br>D0 | $\begin{array}{r} 12 + 0577 &- 12 + 0584 \\ 12 + 0585 &- 12 + 0592 \\ 12 + 0593 &- 12 + 0600 \\ 12 + 0601 &- 12 + 0608 \\ 12 + 0609 &- 12 + 0616 \\ 12 + 0617 &- 12 + 0624 \\ 12 + 0625 &- 12 + 0632 \\ 12 + 0633 &- 12 + 0640 \\ \end{array}$ |
| 209                                                  | D1                                           | I2+0641 - I2+0648                                                                                                                                                                                                                              |
| 210                                                  | D2                                           | I2+0649 - I2+0656                                                                                                                                                                                                                              |
| 211                                                  | D3                                           | I2+0657 - I2+0664                                                                                                                                                                                                                              |
| 212                                                  | D4                                           | I2+0665 - I2+0672                                                                                                                                                                                                                              |
| 213                                                  | D5                                           | I2+0673 - I2+0680                                                                                                                                                                                                                              |
| 214                                                  | D6                                           | I2+0681 - I2+0688                                                                                                                                                                                                                              |
| 215                                                  | D7                                           | I2+0689 - I2+0696                                                                                                                                                                                                                              |
| 216                                                  | D8                                           | I2+0697 - I2+0704                                                                                                                                                                                                                              |
| 217                                                  | D9                                           | I2+0705 - I2+0712                                                                                                                                                                                                                              |
| 218                                                  | DA                                           | I2+0713 - I2+0720                                                                                                                                                                                                                              |
| 219                                                  | DB                                           | I2+0721 - I2+0728                                                                                                                                                                                                                              |
| 220                                                  | DC                                           | I2+0729 - I2+0736                                                                                                                                                                                                                              |
| 221                                                  | DD                                           | I2+0737 - I2+0744                                                                                                                                                                                                                              |
| 222                                                  | DE                                           | I2+0745 - I2+0752                                                                                                                                                                                                                              |
| 223                                                  | DF                                           | I2+0753 - I2+0760                                                                                                                                                                                                                              |
| 224                                                  | E0                                           | I2+0761 - I2+0768                                                                                                                                                                                                                              |
| 225<br>226<br>227<br>228<br>229<br>230<br>231<br>232 | E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8 | $\begin{array}{r} 12 + 0769 &- 12 + 0776 \\ 12 + 0777 &- 12 + 0784 \\ 12 + 0785 &- 12 + 0792 \\ 12 + 0793 &- 12 + 0800 \\ 12 + 0801 &- 12 + 0808 \\ 12 + 0809 &- 12 + 0816 \\ 12 + 0817 &- 12 + 0824 \\ 12 + 0825 &- 12 + 0832 \\ \end{array}$ |
| 233                                                  | E9                                           | I2+0833 - I2+0840                                                                                                                                                                                                                              |
| 234                                                  | EA                                           | I2+0841 - I2+0848                                                                                                                                                                                                                              |
| 235                                                  | EB                                           | I2+0849 - I2+0856                                                                                                                                                                                                                              |
| 236                                                  | EC                                           | I2+0857 - I2+0864                                                                                                                                                                                                                              |
| 237                                                  | ED                                           | I2+0865 - I2+0872                                                                                                                                                                                                                              |
| 238                                                  | EE                                           | I2+0873 - I2+0880                                                                                                                                                                                                                              |
| 239                                                  | EF                                           | I2+0881 - I2+0888                                                                                                                                                                                                                              |
| 240                                                  | F0                                           | I2+0889 - I2+0896                                                                                                                                                                                                                              |
| 241                                                  | F1                                           | 12+0897 - 12+0904                                                                                                                                                                                                                              |
| 242                                                  | F2                                           | 12+0905 - 12+0912                                                                                                                                                                                                                              |
| 243                                                  | F3                                           | 12+0913 - 12+0920                                                                                                                                                                                                                              |
| 244                                                  | F4                                           | 12+0921 - 12+0928                                                                                                                                                                                                                              |
| 245                                                  | F5                                           | 12+0929 - 12+0936                                                                                                                                                                                                                              |
| 246                                                  | F6                                           | 12+0937 - 12+0944                                                                                                                                                                                                                              |
| 247                                                  | F7                                           | 12+0945 - 12+0952                                                                                                                                                                                                                              |
| 248                                                  | F8                                           | 12+0953 - 12+0960                                                                                                                                                                                                                              |

| Target Address                                              |                                                      | Table Reference                                                                                                                      |
|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                                     | Hexadecimal                                          |                                                                                                                                      |
| 249                                                         | F9                                                   | I2+0961 - I2+0968                                                                                                                    |
| 250                                                         | FA                                                   | I2+0969 - I2+0976                                                                                                                    |
| 251                                                         | FB                                                   | I2+0977 - I2+0984                                                                                                                    |
| 252                                                         | FC                                                   | I2+0985 - I2+0992                                                                                                                    |
| 253                                                         | FD                                                   | I2+0993 - I2+1000                                                                                                                    |
| 254                                                         | FE                                                   | I2+1001 - I2+1008                                                                                                                    |
| 255                                                         | FF                                                   | I2+1009 - I2+1016                                                                                                                    |
| 256                                                         | 100                                                  | I2+1017 - I2+1024                                                                                                                    |
| 257<br>258<br>259<br>260<br>261<br>262<br>263<br>263<br>264 | 101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | I0001 - I0008<br>I0009 - I0016<br>I0017 - I0024<br>I0025 - I0032<br>I0033 - I0040<br>I0041 - I0048<br>I0049 - I0056<br>I0057 - I0064 |
| 265<br>266<br>267<br>268<br>269<br>270<br>271<br>271<br>272 | 109<br>10A<br>10B<br>10C<br>10D<br>10E<br>10F<br>110 | 10065 - 10072<br>10073 - 10080<br>10081 - 10088<br>10089 - 10096<br>10097 - 10104<br>10105 - 10112<br>10113 - 10120<br>10121 - 10128 |
| 273                                                         | 111                                                  | I0129 - I0136                                                                                                                        |
| 274                                                         | 112                                                  | I0137 - I0144                                                                                                                        |
| 275                                                         | 113                                                  | I0145 - I0152                                                                                                                        |
| 276                                                         | 114                                                  | I0153 - I0160                                                                                                                        |
| 277                                                         | 115                                                  | I0161 - I0168                                                                                                                        |
| 278                                                         | 116                                                  | I0169 - I0176                                                                                                                        |
| 279                                                         | 117                                                  | I0177 - I0184                                                                                                                        |
| 280                                                         | 118                                                  | I0185 - I0192                                                                                                                        |
| 281                                                         | 119                                                  | I0193 - I0200                                                                                                                        |
| 282                                                         | 11A                                                  | I0201 - I0208                                                                                                                        |
| 283                                                         | 11B                                                  | I0209 - I0216                                                                                                                        |
| 284                                                         | 11C                                                  | I0217 - I0224                                                                                                                        |
| 285                                                         | 11D                                                  | I0225 - I0232                                                                                                                        |
| 286                                                         | 11E                                                  | I0233 - I0240                                                                                                                        |
| 287                                                         | 11F                                                  | I0241 - I0248                                                                                                                        |
| 288                                                         | 120                                                  | I0249 - I0256                                                                                                                        |
| 289                                                         | 121                                                  | 10257 - 10264                                                                                                                        |
| 290                                                         | 122                                                  | 10265 - 10272                                                                                                                        |
| 291                                                         | 123                                                  | 10273 - 10280                                                                                                                        |
| 292                                                         | 124                                                  | 10281 - 10288                                                                                                                        |
| 293                                                         | 125                                                  | 10289 - 10296                                                                                                                        |
| 294                                                         | 126                                                  | 10297 - 10304                                                                                                                        |
| 295                                                         | 127                                                  | 10305 - 10312                                                                                                                        |
| 296                                                         | 128                                                  | 10313 - 10320                                                                                                                        |
| 297                                                         | 129                                                  | I0321 - I0328                                                                                                                        |
| 298                                                         | 12A                                                  | I0329 - I0336                                                                                                                        |
| 299                                                         | 12B                                                  | I0337 - I0344                                                                                                                        |
| 300                                                         | 12C                                                  | I0345 - I0352                                                                                                                        |
| 301                                                         | 12D                                                  | I0353 - I0360                                                                                                                        |
| 302                                                         | 12E                                                  | I0361 - I0368                                                                                                                        |
| 303                                                         | 12F                                                  | I0369 - I0376                                                                                                                        |
| 304                                                         | 130                                                  | I0377 - I0384                                                                                                                        |

| Target Address<br>Decimal Hexadecimal |     | Table Reference |
|---------------------------------------|-----|-----------------|
| 305                                   | 131 | 10385 - 10392   |
| 306                                   | 132 | 10393 - 10400   |
| 307                                   | 133 | 10401 - 10408   |
| 308                                   | 134 | 10409 - 10416   |
| 309                                   | 135 | 10417 - 10424   |
| 310                                   | 136 | 10425 - 10432   |
| 311                                   | 137 | 10433 - 10440   |
| 312                                   | 138 | 10441 - 10448   |
| 313                                   | 139 | I0449 - I0456   |
| 314                                   | 13A | I0457 - I0464   |
| 315                                   | 13B | I0465 - I0472   |
| 316                                   | 13C | I0473 - I0480   |
| 317                                   | 13D | I0481 - I0488   |
| 318                                   | 13E | I0489 - I0496   |
| 319                                   | 13F | I0497 - I0504   |
| 320                                   | 140 | I0505 - I0512   |
| 321                                   | 141 | 10513 - 10520   |
| 322                                   | 142 | 10521 - 10528   |
| 323                                   | 143 | 10529 - 10536   |
| 324                                   | 144 | 10537 - 10544   |
| 325                                   | 145 | 10545 - 10552   |
| 326                                   | 146 | 10553 - 10560   |
| 327                                   | 147 | 10561 - 10568   |
| 328                                   | 148 | 10569 - 10576   |
| 329                                   | 149 | 10577 - 10584   |
| 330                                   | 14A | 10585 - 10592   |
| 331                                   | 14B | 10593 - 10600   |
| 332                                   | 14C | 10601 - 10608   |
| 333                                   | 14D | 10609 - 10616   |
| 334                                   | 14E | 10617 - 10624   |
| 335                                   | 14F | 10625 - 10632   |
| 336                                   | 150 | 10633 - 10640   |
| 337                                   | 151 | 10641 - 10648   |
| 338                                   | 152 | 10649 - 10656   |
| 339                                   | 153 | 10657 - 10664   |
| 340                                   | 154 | 10665 - 10672   |
| 341                                   | 155 | 10673 - 10680   |
| 342                                   | 156 | 10681 - 10688   |
| 343                                   | 157 | 10689 - 10696   |
| 344                                   | 158 | 10697 - 10704   |
| 345                                   | 159 | I0705 - I0712   |
| 346                                   | 15A | I0713 - I0720   |
| 347                                   | 15B | I0721 - I0728   |
| 348                                   | 15C | I0729 - I0736   |
| 349                                   | 15D | I0737 - I0744   |
| 350                                   | 15E | I0745 - I0752   |
| 351                                   | 15F | I0753 - I0760   |
| 352                                   | 160 | I0761 - I0768   |
| 353                                   | 161 | 10769 - 10776   |
| 354                                   | 162 | 10777 - 10784   |
| 355                                   | 163 | 10785 - 10792   |
| 356                                   | 164 | 10793 - 10800   |
| 357                                   | 165 | 10801 - 10808   |
| 358                                   | 166 | 10809 - 10816   |
| 359                                   | 167 | 10817 - 10824   |
| 360                                   | 168 | 10825 - 10832   |

| Target<br>Decimal | Address<br>Hexadecimal | Table Reference   |
|-------------------|------------------------|-------------------|
| 361               | 169                    | 10833 - 10840     |
| 362               | 16A                    | 10841 - 10848     |
| 363               | 16B                    | 10849 - 10856     |
| 364               | 16C                    | 10857 - 10864     |
| 365               | 16D                    | 10865 - 10872     |
| 366               | 16E                    | 10873 - 10880     |
| 367               | 16F                    | 10881 - 10888     |
| 368               | 170                    | 10889 - 10896     |
| 369               | 171                    | 10897 - 10904     |
| 370               | 172                    | 10905 - 10912     |
| 371               | 173                    | 10913 - 10920     |
| 372               | 174                    | 10921 - 10928     |
| 373               | 175                    | 10929 - 10936     |
| 374               | 176                    | 10937 - 10944     |
| 375               | 177                    | 10945 - 10952     |
| 376               | 178                    | 10953 - 10960     |
| 377               | 179                    | I0961 - I0968     |
| 378               | 17A                    | I0969 - I0976     |
| 379               | 17B                    | I0977 - I0984     |
| 380               | 17C                    | I0985 - I0992     |
| 381               | 17D                    | I0993 - I1000     |
| 382               | 17E                    | I1001 - I1008     |
| 383               | 17F                    | I1009 - I1016     |
| 384               | 180                    | I1017 - I1024     |
| 385               | 181                    | I1-0001 - I1-0008 |
| 386               | 182                    | I1-0009 - I1-0016 |
| 387               | 183                    | I1-0017 - I1-0024 |
| 388               | 184                    | I1-0025 - I1-0032 |
| 389               | 185                    | I1-0033 - I1-0040 |
| 390               | 186                    | I1-0041 - I1-0048 |
| 391               | 187                    | I1-0049 - I1-0056 |
| 392               | 188                    | I1-0057 - I1-0064 |
| 393               | 189                    | I1-0065 - I1-0072 |
| 394               | 18A                    | I1-0073 - I1-0080 |
| 395               | 18B                    | I1-0081 - I1-0088 |
| 396               | 18C                    | I1-0089 - I1-0096 |
| 397               | 18D                    | I1-0097 - I1-0104 |
| 398               | 18E                    | I1-0105 - I1-0112 |
| 399               | 18F                    | I1-0113 - I1-0120 |
| 400               | 190                    | I1-0121 - I1-0128 |
| 401               | 191                    | I1-0129 - I1-0136 |
| 402               | 192                    | I1-0137 - I1-0144 |
| 403               | 193                    | I1-0145 - I1-0152 |
| 404               | 194                    | I1-0153 - I1-0160 |
| 405               | 195                    | I1-0161 - I1-0168 |
| 406               | 196                    | I1-0169 - I1-0176 |
| 407               | 197                    | I1-0177 - I1-0184 |
| 408               | 198                    | I1-0185 - I1-0192 |
| 409               | 199                    | I1-0193 - I1-0200 |
| 410               | 19A                    | I1-0201 - I1-0208 |
| 411               | 19B                    | I1-0209 - I1-0216 |
| 412               | 19C                    | I1-0217 - I1-0224 |
| 413               | 19D                    | I1-0225 - I1-0232 |
| 414               | 19E                    | I1-0233 - I1-0240 |
| 415               | 19F                    | I1-0241 - I1-0248 |
| 416               | 1A0                    | I1-0249 - I1-0256 |

r

|     | Address<br>Hexadecimal | Table Reference   |
|-----|------------------------|-------------------|
| 417 | 1A1                    | I1-0257 - I1-0264 |
| 418 | 1A2                    | I1-0265 - I1-0272 |
| 419 | 1A3                    | I1-0273 - I1-0280 |
| 420 | 1A4                    | I1-0281 - I1-0288 |
| 421 | 1A5                    | I1-0289 - I1-0296 |
| 422 | 1A6                    | I1-0297 - I1-0304 |
| 423 | 1A7                    | I1-0305 - I1-0312 |
| 424 | 1A8                    | I1-0313 - I1-0320 |
| 425 | 1A9                    | I1-0321 - I1-0328 |
| 426 | 1AA                    | I1-0329 - I1-0336 |
| 427 | 1AB                    | I1-0337 - I1-0344 |
| 428 | 1AC                    | I1-0345 - I1-0352 |
| 429 | 1AD                    | I1-0353 - I1-0360 |
| 430 | 1AE                    | I1-0361 - I1-0368 |
| 431 | 1AF                    | I1-0369 - I1-0376 |
| 432 | 1B0                    | I1-0377 - I1-0384 |

| Target<br>Decimal | Address<br>Hexadecimal | Table Reference   |
|-------------------|------------------------|-------------------|
| 433               | 1B1                    | I1-0385 - I1-0392 |
| 434               | 1B2                    | I1-0393 - I1-0400 |
| 435               | 1B3                    | I1-0401 - I1-0408 |
| 436               | 1B4                    | I1-0409 - I1-0416 |
| 437               | 1B5                    | I1-0417 - I1-0424 |
| 438               | 1B6                    | I1-0425 - I1-0432 |
| 439               | 1B7                    | I1-0433 - I1-0440 |
| 440               | 1B8                    | I1-0441 - I1-0448 |
| 441               | 1B9                    | I1-0449 - I1-0456 |
| 442               | 1BA                    | I1-0457 - I1-0464 |
| 443               | 1BB                    | I1-0465 - I1-0472 |
| 444               | 1BC                    | I1-0473 - I1-0480 |
| 445               | 1BD                    | I1-0481 - I1-0488 |
| 446               | 1BE                    | I1-0489 - I1-0496 |
| 447               | 1BF                    | I1-0497 - I1-0504 |
| 448               | 1C0                    | I1-0505 - I1-0512 |

| Target Address<br>Decimal Hexadecimal        |                                              | Table Reference                                                                                                                                                                                                                                                        |
|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8         | $\begin{array}{c} O1+0001 - O1+0008\\ O1+0009 - O1+0016\\ O1+0017 - O1+0024\\ O1+0025 - O1+0032\\ O1+0033 - O1+0040\\ O1+0041 - O1+0048\\ O1+0049 - O1+0056\\ O1+0057 - O1+0064\\ \end{array}$                                                                         |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16  | 9<br>A<br>B<br>C<br>D<br>E<br>F<br>10        | $\begin{array}{c} 01 + 0065 & - & 01 + 0072 \\ 01 + 0073 & - & 01 + 0080 \\ 01 + 0081 & - & 01 + 0088 \\ 01 + 0089 & - & 01 + 0096 \\ 01 + 0097 & - & 01 + 0104 \\ 01 + 0105 & - & 01 + 0112 \\ 01 + 0113 & - & 01 + 0120 \\ 01 + 0121 & - & 01 + 0128 \\ \end{array}$ |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | $\begin{array}{c} 01 + 0129 - 01 + 0136 \\ 01 + 0137 - 01 + 0144 \\ 01 + 0145 - 01 + 0152 \\ 01 + 0153 - 01 + 0160 \\ 01 + 0161 - 01 + 0168 \\ 01 + 0169 - 01 + 0176 \\ 01 + 0177 - 01 + 0184 \\ 01 + 0185 - 01 + 0192 \end{array}$                                    |
| 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32 | 19<br>1A<br>1B<br>1C<br>1D<br>1E<br>1F<br>20 | $\begin{array}{c} 01 + 0193 & - 01 + 0200 \\ 01 + 0201 & - 01 + 0208 \\ 01 + 0209 & - 01 + 0216 \\ 01 + 0217 & - 01 + 0224 \\ 01 + 0225 & - 01 + 0232 \\ 01 + 0233 & - 01 + 0240 \\ 01 + 0241 & - 01 + 0248 \\ 01 + 0249 & - 01 + 0256 \end{array}$                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | $\begin{array}{c} 01 + 0257 & - & 01 + 0264 \\ 01 + 0265 & - & 01 + 0272 \\ 01 + 0273 & - & 01 + 0280 \\ 01 + 0281 & - & 01 + 0288 \\ 01 + 0289 & - & 01 + 0296 \\ 01 + 0297 & - & 01 + 0304 \\ 01 + 0305 & - & 01 + 0312 \\ 01 + 0313 & - & 01 + 0320 \\ \end{array}$ |
| 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48 | 29<br>2A<br>2B<br>2C<br>2D<br>2E<br>2F<br>30 | $\begin{array}{c} 01 + 0321 & - & 01 + 0328 \\ 01 + 0329 & - & 01 + 0336 \\ 01 + 0337 & - & 01 + 0344 \\ 01 + 0345 & - & 01 + 0352 \\ 01 + 0353 & - & 01 + 0360 \\ 01 + 0361 & - & 01 + 0368 \\ 01 + 0369 & - & 01 + 0376 \\ 01 + 0377 & - & 01 + 0384 \\ \end{array}$ |

|            | 001010            |             | - (0) |              |
|------------|-------------------|-------------|-------|--------------|
| Table A-2. | <b>CCM Memory</b> | Types 3 and | 5 (Ui | itputs/Byte) |

| Target                                       |                                              | Table Reference                                                                                                                                                                                                                                                        |
|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                      | Hexadecimal                                  |                                                                                                                                                                                                                                                                        |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56 | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | O1+0385 - O1+0392<br>O1+0393 - O1+0400<br>O1+0401 - O1+0408<br>O1+0409 - O1+0416<br>O1+0417 - O1+0424<br>O1+0425 - O1+0432<br>O1+0433 - O1+0440<br>O1+0441 - O1+0448                                                                                                   |
| 57<br>58<br>59<br>60<br>61<br>62<br>63<br>64 | 39<br>3A<br>3B<br>3C<br>3D<br>3E<br>3F<br>40 | $\begin{array}{l} 01 + 0449 - 01 + 0456 \\ 01 + 0457 - 01 + 0464 \\ 01 + 0465 - 01 + 0472 \\ 01 + 0473 - 01 + 0480 \\ 01 + 0481 - 01 + 0488 \\ 01 + 0489 - 01 + 0496 \\ 01 + 0497 - 01 + 0504 \\ 01 + 0505 - 01 + 0512 \end{array}$                                    |
| 65<br>66<br>67<br>68<br>69<br>70<br>71<br>72 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48 | $\begin{array}{c} 01+0513 - 01+0520 \\ 01+0521 - 01+0528 \\ 01+0529 - 01+0536 \\ 01+0537 - 01+0544 \\ 01+0545 - 01+0552 \\ 01+0553 - 01+0560 \\ 01+0561 - 01+0568 \\ 01+0569 - 01+0576 \end{array}$                                                                    |
| 73<br>74<br>75<br>76<br>77<br>78<br>79<br>80 | 49<br>4A<br>4B<br>4C<br>4D<br>4E<br>4F<br>50 | $\begin{array}{c} 01 + 0577 & - & 01 + 0584 \\ 01 + 0585 & - & 01 + 0592 \\ 01 + 0593 & - & 01 + 0600 \\ 01 + 0601 & - & 01 + 0608 \\ 01 + 0609 & - & 01 + 0616 \\ 01 + 0617 & - & 01 + 0624 \\ 01 + 0625 & - & 01 + 0632 \\ 01 + 0633 & - & 01 + 0640 \\ \end{array}$ |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88 | 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | $\begin{array}{r} 01+0641 & - & 01+0648 \\ 01+0649 & - & 01+0656 \\ 01+0657 & - & 01+0664 \\ 01+0665 & - & 01+0672 \\ 01+0673 & - & 01+0680 \\ 01+0681 & - & 01+0688 \\ 01+0689 & - & 01+0696 \\ 01+0697 & - & 01+0704 \\ \end{array}$                                 |
| 89<br>90<br>91<br>92<br>93<br>94<br>95<br>96 | 59<br>5A<br>5B<br>5C<br>5D<br>5E<br>5F<br>60 | $\begin{array}{c} 01 + 0705 & - & 01 + 0712 \\ 01 + 0713 & - & 01 + 0720 \\ 01 + 0721 & - & 01 + 0728 \\ 01 + 0729 & - & 01 + 0736 \\ 01 + 0737 & - & 01 + 0744 \\ 01 + 0745 & - & 01 + 0752 \\ 01 + 0753 & - & 01 + 0760 \\ 01 + 0761 & - & 01 + 0768 \\ \end{array}$ |

z

| Target<br>Decimal                                    | Address<br>Hexadecimal                       | Table Reference                                                                                                                                                                                                                        |
|------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97<br>98<br>99<br>100<br>101<br>102<br>103<br>104    | 61<br>62<br>63<br>64<br>65<br>66<br>67<br>68 | $\begin{array}{c} 01 + 0769 - 01 + 0776 \\ 01 + 0777 - 01 + 0784 \\ 01 + 0785 - 01 + 0792 \\ 01 + 0793 - 01 + 0800 \\ 01 + 0801 - 01 + 0808 \\ 01 + 0809 - 01 + 0816 \\ 01 + 0817 - 01 + 0824 \\ 01 + 0825 - 01 + 0832 \\ \end{array}$ |
| 105<br>106<br>107<br>108<br>109<br>110<br>111<br>112 | 69<br>6A<br>6B<br>6C<br>6D<br>6E<br>6F<br>70 | $\begin{array}{c} O1+0833 - O1+0840\\ O1+0841 - O1+0848\\ O1+0849 - O1+0856\\ O1+0857 - O1+0856\\ O1+0857 - O1+0864\\ O1+0865 - O1+0872\\ O1+0873 - O1+0880\\ O1+0881 - O1+0888\\ O1+0889 - O1+0896\\ \end{array}$                     |
| 113<br>114<br>115<br>116<br>117<br>118<br>119<br>120 | 71<br>72<br>73<br>74<br>75<br>76<br>77<br>78 | O1+0897 - O1+0904<br>O1+0905 - O1+0912<br>O1+0913 - O1+0920<br>O1+0921 - O1+0928<br>O1+0929 - O1+0936<br>O1+0937 - O1+0944<br>O1+0945 - O1+0952<br>O1+0953 - O1+0960                                                                   |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128 | 79<br>7A<br>7B<br>7C<br>7D<br>7E<br>7F<br>80 | O1+0961 - O1+0968<br>O1+0969 - O1+0976<br>O1+0977 - O1+0984<br>O1+0985 - O1+0992<br>O1+0993 - O1+1000<br>O1+1001 - O1+1008<br>O1+1009 - O1+1016<br>O1+1017 - O1+1024                                                                   |
| 129<br>130<br>131<br>132<br>133<br>134<br>135<br>136 | 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88 | O2+0001 - O2+0008<br>O2+0009 - O2+0016<br>O2+0017 - O2+0024<br>O2+0025 - O2+0032<br>O2+0033 - O2+0040<br>O2+0041 - O2+0048<br>O2+0049 - O2+0056<br>O2+0057 - O2+0064                                                                   |
| 137<br>138<br>139<br>140<br>141<br>142<br>143<br>144 | 89<br>8A<br>8B<br>8C<br>8D<br>8E<br>8F<br>90 | $\begin{array}{r} 02{+}0065 - 02{+}0072 \\ 02{+}0073 - 02{+}0080 \\ 02{+}0081 - 02{+}0088 \\ 02{+}0089 - 02{+}0096 \\ 02{+}0097 - 02{+}0104 \\ 02{+}0105 - 02{+}0112 \\ 02{+}0113 - 02{+}0120 \\ 02{+}0121 - 02{+}0128 \end{array}$    |
| 145<br>146<br>147<br>148<br>149<br>150<br>151<br>152 | 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98 | $\begin{array}{r} 02 + 0129 - 02 + 0136 \\ 02 + 0137 - 02 + 0144 \\ 02 + 0145 - 02 + 0152 \\ 02 + 0153 - 02 + 0160 \\ 02 + 0161 - 02 + 0168 \\ 02 + 0169 - 02 + 0176 \\ 02 + 0177 - 02 + 0184 \\ 02 + 0185 - 02 + 0192 \end{array}$    |

| Target Address Table Reference                       |                                              |                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                              | Address<br>Hexadecimal                       | Table Reference                                                                                                                                                                                                                                                        |
| 153<br>154<br>155<br>156<br>157<br>158<br>159<br>160 | 99<br>9A<br>9B<br>9C<br>9D<br>9E<br>9F<br>A0 | $\begin{array}{r} 02 + 0193 - 02 + 0200 \\ 02 + 0201 - 02 + 0208 \\ 02 + 0209 - 02 + 0216 \\ 02 + 0217 - 02 + 0224 \\ 02 + 0225 - 02 + 0232 \\ 02 + 0233 - 02 + 0240 \\ 02 + 0241 - 02 + 0248 \\ 02 + 0249 - 02 + 0256 \end{array}$                                    |
| 161<br>162<br>163<br>164<br>165<br>166<br>167<br>168 | A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>A7<br>A8 | $\begin{array}{c} 02 + 0257 & - & 02 + 0264 \\ 02 + 0265 & - & 02 + 0272 \\ 02 + 0273 & - & 02 + 0280 \\ 02 + 0281 & - & 02 + 0288 \\ 02 + 0289 & - & 02 + 0296 \\ 02 + 0297 & - & 02 + 0304 \\ 02 + 0305 & - & 02 + 0312 \\ 02 + 0313 & - & 02 + 0320 \\ \end{array}$ |
| 169<br>170<br>171<br>172<br>173<br>174<br>175<br>176 | A9<br>AA<br>AB<br>AC<br>AD<br>AE<br>AF<br>B0 | $\begin{array}{c} 02 + 0321 - 02 + 0328\\ 02 + 0329 - 02 + 0336\\ 02 + 0337 - 02 + 0344\\ 02 + 0345 - 02 + 0352\\ 02 + 0353 - 02 + 0360\\ 02 + 0361 - 02 + 0368\\ 02 + 0369 - 02 + 0376\\ 02 + 0377 - 02 + 0384\\ \end{array}$                                         |
| 177<br>178<br>179<br>180<br>181<br>182<br>183<br>184 | B1<br>B2<br>B3<br>B4<br>B5<br>B6<br>B7<br>B8 | $\begin{array}{r} 02 + 0385 - 02 + 0392 \\ 02 + 0393 - 02 + 0400 \\ 02 + 0401 - 02 + 0408 \\ 02 + 0409 - 02 + 0416 \\ 02 + 0417 - 02 + 0424 \\ 02 + 0425 - 02 + 0432 \\ 02 + 0433 - 02 + 0440 \\ 02 + 0441 - 02 + 0448 \end{array}$                                    |
| 185<br>186<br>187<br>188<br>189<br>190<br>191<br>192 | B9<br>BA<br>BB<br>BC<br>BD<br>BE<br>BF<br>C0 | O2+0449 - O2+0456<br>O2+0457 - O2+0464<br>O2+0465 - O2+0472<br>O2+0473 - O2+0480<br>O2+0481 - O2+0488<br>O2+0489 - O2+0488<br>O2+0489 - O2+0496<br>O2+0497 - O2+0504<br>O2+0505 - O2+0512                                                                              |
| 193<br>194<br>195<br>196<br>197<br>198<br>199<br>200 | C1<br>C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>C8 | $\begin{array}{r} 02 + 0513 & - 02 + 0520 \\ 02 + 0521 & - 02 + 0528 \\ 02 + 0529 & - 02 + 0536 \\ 02 + 0537 & - 02 + 0536 \\ 02 + 0545 & - 02 + 0552 \\ 02 + 0553 & - 02 + 0560 \\ 02 + 0561 & - 02 + 0568 \\ 02 + 0569 & - 02 + 0576 \\ \end{array}$                 |
| 201<br>202<br>203<br>204<br>205<br>206<br>207<br>208 | C9<br>CA<br>CB<br>CC<br>CD<br>CE<br>CF<br>D0 | $\begin{array}{r} 02 + 0577 & - & 02 + 0584 \\ 02 + 0585 & - & 02 + 0592 \\ 02 + 0593 & - & 02 + 0600 \\ 02 + 0601 & - & 02 + 0608 \\ 02 + 0609 & - & 02 + 0616 \\ 02 + 0617 & - & 02 + 0624 \\ 02 + 0625 & - & 02 + 0632 \\ 02 + 0633 & - & 02 + 0640 \\ \end{array}$ |

| Target Address                                       |                                                      | Table Reference                                                                                                                                                                                                                                                        |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                              | Hexadecimal                                          |                                                                                                                                                                                                                                                                        |
| 209<br>210<br>211<br>212<br>213<br>214<br>215<br>216 | D1<br>D2<br>D3<br>D4<br>D5<br>D6<br>D7<br>D8         | $\begin{array}{r} 02 + 0641 - 02 + 0648\\ 02 + 0649 - 02 + 0656\\ 02 + 0657 - 02 + 0664\\ 02 + 0665 - 02 + 0672\\ 02 + 0665 - 02 + 0672\\ 02 + 0673 - 02 + 0680\\ 02 + 0681 - 02 + 0688\\ 02 + 0689 - 02 + 0696\\ 02 + 0697 - 02 + 0704\\ \end{array}$                 |
| 217<br>218<br>219<br>220<br>221<br>222<br>223<br>224 | D9<br>DA<br>DB<br>DC<br>DD<br>DE<br>DF<br>E0         | O2+0705 - O2+0712<br>O2+0713 - O2+0720<br>O2+0721 - O2+0728<br>O2+0729 - O2+0736<br>O2+0737 - O2+0744<br>O2+0745 - O2+0752<br>O2+0753 - O2+0760<br>O2+0761 - O2+0768                                                                                                   |
| 225<br>226<br>227<br>228<br>229<br>230<br>231<br>232 | E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8         | O2+0769 - O2+0776<br>O2+0777 - O2+0784<br>O2+0785 - O2+0792<br>O2+0793 - O2+0800<br>O2+0801 - O2+0808<br>O2+0809 - O2+0816<br>O2+0817 - O2+0824<br>O2+0825 - O2+0832                                                                                                   |
| 233<br>234<br>235<br>236<br>237<br>238<br>239<br>240 | E9<br>EA<br>EB<br>EC<br>ED<br>EE<br>EF<br>F0         | $\begin{array}{r} 02 + 0833 - 02 + 0840 \\ 02 + 0841 - 02 + 0848 \\ 02 + 0849 - 02 + 0856 \\ 02 + 0857 - 02 + 0856 \\ 02 + 0857 - 02 + 0864 \\ 02 + 0865 - 02 + 0872 \\ 02 + 0873 - 02 + 0880 \\ 02 + 0881 - 02 + 0888 \\ 02 + 0889 - 02 + 0896 \end{array}$           |
| 241<br>242<br>243<br>244<br>245<br>246<br>247<br>248 | F1<br>F2<br>F3<br>F4<br>F5<br>F6<br>F7<br>F8         | O2+0897 - O2+0904<br>O2+0905 - O2+0912<br>O2+0913 - O2+0920<br>O2+0921 - O2+0928<br>O2+0929 - O2+0936<br>O2+0937 - O2+0944<br>O2+0945 - O2+0952<br>O2+0953 - O2+0960                                                                                                   |
| 249<br>250<br>251<br>252<br>253<br>254<br>255<br>256 | F9<br>FA<br>FB<br>FC<br>FD<br>FE<br>FF<br>100        | $\begin{array}{r} 02 + 0961 & - & 02 + 0968 \\ 02 + 0969 & - & 02 + 0976 \\ 02 + 0977 & - & 02 + 0984 \\ 02 + 0985 & - & 02 + 0992 \\ 02 + 0993 & - & 02 + 1000 \\ 02 + 1001 & - & 02 + 1008 \\ 02 + 1009 & - & 02 + 1016 \\ 02 + 1017 & - & 02 + 1024 \\ \end{array}$ |
| 257<br>258<br>259<br>260<br>261<br>262<br>263<br>264 | 101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | O0001 - O0008<br>O0009 - O0016<br>O0017 - O0024<br>O0025 - O0032<br>O0033 - O0040<br>O0041 - O0048<br>O0049 - O0056<br>O0057 - O0064                                                                                                                                   |

| Target<br>Decimal                                    | Address<br>Hexadecimal                               | Table Reference                                                                                                                                                                                                                       |
|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 265                                                  | 109                                                  | O0065 - O0072                                                                                                                                                                                                                         |
| 266                                                  | 10A                                                  | O0073 - O0080                                                                                                                                                                                                                         |
| 267                                                  | 10B                                                  | O0081 - O0088                                                                                                                                                                                                                         |
| 268                                                  | 10C                                                  | O0089 - O0096                                                                                                                                                                                                                         |
| 269                                                  | 10D                                                  | O0097 - O0104                                                                                                                                                                                                                         |
| 270                                                  | 10E                                                  | O0105 - O0112                                                                                                                                                                                                                         |
| 271                                                  | 10F                                                  | O0113 - O0120                                                                                                                                                                                                                         |
| 272                                                  | 110                                                  | O0121 - O0128                                                                                                                                                                                                                         |
| 273                                                  | 111                                                  | 00129 - 00136                                                                                                                                                                                                                         |
| 274                                                  | 112                                                  | 00137 - 00144                                                                                                                                                                                                                         |
| 275                                                  | 113                                                  | 00145 - 00152                                                                                                                                                                                                                         |
| 276                                                  | 114                                                  | 00153 - 00160                                                                                                                                                                                                                         |
| 277                                                  | 115                                                  | 00161 - 00168                                                                                                                                                                                                                         |
| 278                                                  | 116                                                  | 00169 - 00176                                                                                                                                                                                                                         |
| 279                                                  | 117                                                  | 00177 - 00184                                                                                                                                                                                                                         |
| 280                                                  | 118                                                  | 00185 - 00192                                                                                                                                                                                                                         |
| 281<br>282<br>283<br>284<br>285<br>286<br>287<br>288 | 119<br>11A<br>11B<br>11C<br>11D<br>11E<br>11F<br>120 | 00193         00200           00201         00208           00209         00216           00217         00224           00225         00232           00233         00240           00241         00248           00249         00256 |
| 289                                                  | 121                                                  | O0257 - O0264                                                                                                                                                                                                                         |
| 290                                                  | 122                                                  | O0265 - O0272                                                                                                                                                                                                                         |
| 291                                                  | 123                                                  | O0273 - O0280                                                                                                                                                                                                                         |
| 292                                                  | 124                                                  | O0281 - O0288                                                                                                                                                                                                                         |
| 293                                                  | 125                                                  | O0289 - O0296                                                                                                                                                                                                                         |
| 294                                                  | 126                                                  | O0297 - O0304                                                                                                                                                                                                                         |
| 295                                                  | 127                                                  | O0305 - O0312                                                                                                                                                                                                                         |
| 296                                                  | 128                                                  | O0313 - O0320                                                                                                                                                                                                                         |
| 297                                                  | 129                                                  | O0321 - O0328                                                                                                                                                                                                                         |
| 298                                                  | 12A                                                  | O0329 - O0336                                                                                                                                                                                                                         |
| 299                                                  | 12B                                                  | O0337 - O0344                                                                                                                                                                                                                         |
| 300                                                  | 12C                                                  | O0345 - O0352                                                                                                                                                                                                                         |
| 301                                                  | 12D                                                  | O0353 - O0360                                                                                                                                                                                                                         |
| 302                                                  | 12E                                                  | O0361 - O0368                                                                                                                                                                                                                         |
| 303                                                  | 12F                                                  | O0369 - O0376                                                                                                                                                                                                                         |
| 304                                                  | 130                                                  | O0377 - O0384                                                                                                                                                                                                                         |
| 305                                                  | 131                                                  | 00385 - 00392                                                                                                                                                                                                                         |
| 306                                                  | 132                                                  | 00393 - 00400                                                                                                                                                                                                                         |
| 307                                                  | 133                                                  | 00401 - 00408                                                                                                                                                                                                                         |
| 308                                                  | 134                                                  | 00409 - 00416                                                                                                                                                                                                                         |
| 309                                                  | 135                                                  | 00417 - 00424                                                                                                                                                                                                                         |
| 310                                                  | 136                                                  | 00425 - 00432                                                                                                                                                                                                                         |
| 311                                                  | 137                                                  | 00433 - 00440                                                                                                                                                                                                                         |
| 312                                                  | 138                                                  | 00441 - 00448                                                                                                                                                                                                                         |
| 313                                                  | 139                                                  | O0449 - O0456                                                                                                                                                                                                                         |
| 314                                                  | 13A                                                  | O0457 - O0464                                                                                                                                                                                                                         |
| 315                                                  | 13B                                                  | O0465 - O0472                                                                                                                                                                                                                         |
| 316                                                  | 13C                                                  | O0473 - O0480                                                                                                                                                                                                                         |
| 317                                                  | 13D                                                  | O0481 - O0488                                                                                                                                                                                                                         |
| 318                                                  | 13E                                                  | O0489 - O0496                                                                                                                                                                                                                         |
| 319                                                  | 13F                                                  | O0497 - O0504                                                                                                                                                                                                                         |
| 320                                                  | 140                                                  | O0505 - O0512                                                                                                                                                                                                                         |

| Target .<br>Decimal                                  | Address<br>Hexadecimal                                                                                                                           | Table Reference                                                                                                                      |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 321                                                  | 141                                                                                                                                              | O0513 - O0520                                                                                                                        |
| 322                                                  | 142                                                                                                                                              | O0521 - O0528                                                                                                                        |
| 323                                                  | 143                                                                                                                                              | O0529 - O0536                                                                                                                        |
| 324                                                  | 144                                                                                                                                              | O0537 - O0544                                                                                                                        |
| 325                                                  | 145                                                                                                                                              | O0545 - O0552                                                                                                                        |
| 326                                                  | 146                                                                                                                                              | O0553 - O0560                                                                                                                        |
| 327                                                  | 147                                                                                                                                              | O0561 - O0568                                                                                                                        |
| 328                                                  | 148                                                                                                                                              | O0569 - O0576                                                                                                                        |
| 329                                                  | 149                                                                                                                                              | O0577 - O0584                                                                                                                        |
| 330                                                  | 14A                                                                                                                                              | O0585 - O0592                                                                                                                        |
| 331                                                  | 14B                                                                                                                                              | O0593 - O0600                                                                                                                        |
| 332                                                  | 14C                                                                                                                                              | O0601 - O0608                                                                                                                        |
| 333                                                  | 14D                                                                                                                                              | O0609 - O0616                                                                                                                        |
| 334                                                  | 14E                                                                                                                                              | O0617 - O0624                                                                                                                        |
| 335                                                  | 14F                                                                                                                                              | O0625 - O0632                                                                                                                        |
| 336                                                  | 150                                                                                                                                              | O0633 - O0640                                                                                                                        |
| 337                                                  | 151                                                                                                                                              | O0641 - O0648                                                                                                                        |
| 338                                                  | 152                                                                                                                                              | O0649 - O0656                                                                                                                        |
| 339                                                  | 153                                                                                                                                              | O0657 - O0664                                                                                                                        |
| 340                                                  | 154                                                                                                                                              | O0665 - O0672                                                                                                                        |
| 341                                                  | 155                                                                                                                                              | O0673 - O0680                                                                                                                        |
| 342                                                  | 156                                                                                                                                              | O0681 - O0688                                                                                                                        |
| 343                                                  | 157                                                                                                                                              | O0689 - O0696                                                                                                                        |
| 344                                                  | 158                                                                                                                                              | O0697 - O0704                                                                                                                        |
| 345                                                  | 159                                                                                                                                              | 00705 - 00712                                                                                                                        |
| 346                                                  | 15A                                                                                                                                              | 00713 - 00720                                                                                                                        |
| 347                                                  | 15B                                                                                                                                              | 00721 - 00728                                                                                                                        |
| 348                                                  | 15C                                                                                                                                              | 00729 - 00736                                                                                                                        |
| 349                                                  | 15D                                                                                                                                              | 00737 - 00744                                                                                                                        |
| 350                                                  | 15E                                                                                                                                              | 00745 - 00752                                                                                                                        |
| 351                                                  | 15F                                                                                                                                              | 00753 - 00760                                                                                                                        |
| 352                                                  | 160                                                                                                                                              | 00761 - 00768                                                                                                                        |
| 353<br>354<br>355<br>356<br>357<br>358<br>359<br>360 | $     \begin{array}{r}       161 \\       162 \\       163 \\       164 \\       165 \\       166 \\       167 \\       168 \\     \end{array} $ | 00769 - 00776<br>00777 - 00784<br>00785 - 00792<br>00793 - 00800<br>00801 - 00808<br>00809 - 00816<br>00817 - 00824<br>00825 - 00832 |
| 361                                                  | 169                                                                                                                                              | O0833 - O0840                                                                                                                        |
| 362                                                  | 16A                                                                                                                                              | O0841 - O0848                                                                                                                        |
| 363                                                  | 16B                                                                                                                                              | O0849 - O0856                                                                                                                        |
| 364                                                  | 16C                                                                                                                                              | O0857 - O0864                                                                                                                        |
| 365                                                  | 16D                                                                                                                                              | O0865 - O0872                                                                                                                        |
| 366                                                  | 16E                                                                                                                                              | O0873 - O0880                                                                                                                        |
| 367                                                  | 16F                                                                                                                                              | O0881 - O0888                                                                                                                        |
| 368                                                  | 170                                                                                                                                              | O0889 - O0896                                                                                                                        |
| 369                                                  | 171                                                                                                                                              | 00897 - 00904                                                                                                                        |
| 370                                                  | 172                                                                                                                                              | 00905 - 00912                                                                                                                        |
| 371                                                  | 173                                                                                                                                              | 00913 - 00920                                                                                                                        |
| 372                                                  | 174                                                                                                                                              | 00921 - 00928                                                                                                                        |
| 373                                                  | 175                                                                                                                                              | 00929 - 00936                                                                                                                        |
| 374                                                  | 176                                                                                                                                              | 00937 - 00944                                                                                                                        |
| 375                                                  | 177                                                                                                                                              | 00945 - 00952                                                                                                                        |
| 376                                                  | 178                                                                                                                                              | 00953 - 00960                                                                                                                        |

| Target .                                                    |                                                      | Table Reference                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                                     | Hexadecimal                                          |                                                                                                                                                                                                                                                                                                                                |
| 377<br>378<br>379<br>380<br>381<br>382<br>383<br>383<br>384 | 179<br>17A<br>17B<br>17C<br>17D<br>17E<br>17F<br>180 | 00961 - 00968<br>00969 - 00976<br>00977 - 00984<br>00985 - 00992<br>00993 - 01000<br>01001 - 01008<br>01009 - 01016<br>01017 - 01024                                                                                                                                                                                           |
| 385<br>386<br>387<br>388<br>389<br>390<br>391<br>392        | 181<br>182<br>183<br>184<br>185<br>186<br>187<br>188 | O1-0001 - O1-0008<br>O1-0009 - O1-0016<br>O1-0017 - O1-0024<br>O1-0025 - O1-0032<br>O1-0033 - O1-0040<br>O1-0041 - O1-0048<br>O1-0049 - O1-0056<br>O1-0057 - O1-0064                                                                                                                                                           |
| 393<br>394<br>395<br>396<br>397<br>398<br>399<br>400        | 189<br>18A<br>18B<br>18C<br>18D<br>18E<br>18F<br>190 | O1-0065 - O1-0072<br>O1-0073 - O1-0080<br>O1-0081 - O1-0088<br>O1-0089 - O1-0096<br>O1-0097 - O1-0104<br>O1-0105 - O1-0112<br>O1-0113 - O1-0120<br>O1-0121 - O1-0128                                                                                                                                                           |
| 401<br>402<br>403<br>404<br>405<br>406<br>407<br>408        | 191<br>192<br>193<br>194<br>195<br>196<br>197<br>198 | O1-0129 - O1-0136<br>O1-0137 - O1-0144<br>O1-0145 - O1-0152<br>O1-0153 - O1-0160<br>O1-0161 - O1-0168<br>O1-0169 - O1-0176<br>O1-0177 - O1-0184<br>O1-0185 - O1-0192                                                                                                                                                           |
| 409<br>410<br>411<br>412<br>413<br>414<br>415<br>416        | 199<br>19A<br>19B<br>19C<br>19D<br>19E<br>19F<br>1A0 | $\begin{array}{c} 01\text{-}0193 - 01\text{-}0200\\ 01\text{-}0201 - 01\text{-}0208\\ 01\text{-}0209 - 01\text{-}0216\\ 01\text{-}0217 - 01\text{-}0224\\ 01\text{-}0225 - 01\text{-}0232\\ 01\text{-}0233 - 01\text{-}0240\\ 01\text{-}0241 - 01\text{-}0248\\ 01\text{-}0249 - 01\text{-}0256\\ \end{array}$                 |
| 417<br>418<br>419<br>420<br>421<br>422<br>423<br>423<br>424 | 1A1<br>1A2<br>1A3<br>1A4<br>1A5<br>1A6<br>1A7<br>1A8 | $\begin{array}{c} 01\text{-}0257 - 01\text{-}0264\\ 01\text{-}0265 - 01\text{-}0272\\ 01\text{-}0273 - 01\text{-}0280\\ 01\text{-}0281 - 01\text{-}0288\\ 01\text{-}0289 - 01\text{-}0296\\ 01\text{-}0297 - 01\text{-}0304\\ 01\text{-}0305 - 01\text{-}0312\\ 01\text{-}0313 - 01\text{-}0320\\ \end{array}$                 |
| 425<br>426<br>427<br>428<br>429<br>430<br>431<br>432        | 1A9<br>1AA<br>1AB<br>1AC<br>1AD<br>1AE<br>1AF<br>1B0 | $\begin{array}{c} 01\text{-}0321\ -\ 01\text{-}0328\\ 01\text{-}0329\ -\ 01\text{-}0336\\ 01\text{-}0337\ -\ 01\text{-}0344\\ 01\text{-}0345\ -\ 01\text{-}0352\\ 01\text{-}0353\ -\ 01\text{-}0360\\ 01\text{-}0361\ -\ 01\text{-}0368\\ 01\text{-}0369\ -\ 01\text{-}0376\\ 01\text{-}0377\ -\ 01\text{-}0384\\ \end{array}$ |

## A-10

## **CCM Memory Types**

#### GFK-0244

| Target<br>Decimal                                    | Address<br>Hexadecimal                               | Table Reference                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 433<br>434<br>435<br>436<br>437<br>438<br>439<br>440 | 1B1<br>1B2<br>1B3<br>1B4<br>1B5<br>1B6<br>1B7<br>1B8 | O1-0385 - O1-0392<br>O1-0393 - O1-0400<br>O1-0401 - O1-0408<br>O1-0409 - O1-0416<br>O1-0417 - O1-0424<br>O1-0425 - O1-0432<br>O1-0433 - O1-0440<br>O1-0441 - O1-0448                                                                                                                                                                                   |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448 | 1B9<br>1BA<br>1BB<br>1BC<br>1BD<br>1BE<br>1BF<br>1C0 | $\begin{array}{c} 01\text{-}0449 - 01\text{-}0456\\ 01\text{-}0457 - 01\text{-}0464\\ 01\text{-}0465 - 01\text{-}0472\\ 01\text{-}0473 - 01\text{-}0480\\ 01\text{-}0481 - 01\text{-}0488\\ 01\text{-}0489 - 01\text{-}0488\\ 01\text{-}0489 - 01\text{-}0496\\ 01\text{-}0497 - 01\text{-}0504\\ 01\text{-}0505 - 01\text{-}0512\\ \end{array}$       |
| 449<br>450<br>451<br>452<br>453<br>454<br>455<br>456 | 1C1<br>1C2<br>1C3<br>1C4<br>1C5<br>1C6<br>1C7<br>1C8 | $\begin{array}{c} 01-0513 & - & 01-0520 \\ 01-0521 & - & 01-0528 \\ 01-0529 & - & 01-0536 \\ 01-0537 & - & 01-0544 \\ 01-0545 & - & 01-0552 \\ 01-0553 & - & 01-0560 \\ 01-0561 & - & 01-0568 \\ 01-0569 & - & 01-0576 \\ \end{array}$                                                                                                                 |
| 457<br>458<br>459<br>460<br>461<br>462<br>463<br>464 | 1C9<br>1CA<br>1CB<br>1CC<br>1CD<br>1CE<br>1CF<br>1D0 | $\begin{array}{c} 01\text{-}0577 & - 01\text{-}0584 \\ 01\text{-}0585 & - 01\text{-}0592 \\ 01\text{-}0593 & - 01\text{-}0600 \\ 01\text{-}0601 & - 01\text{-}0608 \\ 01\text{-}0609 & - 01\text{-}0616 \\ 01\text{-}0617 & - 01\text{-}0624 \\ 01\text{-}0625 & - 01\text{-}0632 \\ 01\text{-}0633 & - 01\text{-}0640 \\ \end{array}$                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472 | 1D1<br>1D2<br>1D3<br>1D4<br>1D5<br>1D6<br>1D7<br>1D8 | O1-0641 - O1-0648<br>O1-0649 - O1-0656<br>O1-0657 - O1-0664<br>O1-0665 - O1-0672<br>O1-0673 - O1-0680<br>O1-0681 - O1-0688<br>O1-0689 - O1-0696<br>O1-0697 - O1-0704                                                                                                                                                                                   |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480 | 1D9<br>1DA<br>1DB<br>1DC<br>1DD<br>1DE<br>1DF<br>1E0 | $\begin{array}{c} 01\text{-}0705 & - & 01\text{-}0712 \\ 01\text{-}0713 & - & 01\text{-}0720 \\ 01\text{-}0721 & - & 01\text{-}0728 \\ 01\text{-}0729 & - & 01\text{-}0736 \\ 01\text{-}0737 & - & 01\text{-}0744 \\ 01\text{-}0745 & - & 01\text{-}0752 \\ 01\text{-}0753 & - & 01\text{-}0760 \\ 01\text{-}0761 & - & 01\text{-}0768 \\ \end{array}$ |
| 481<br>482<br>483<br>484<br>485<br>486<br>487<br>488 | 1E1<br>1E2<br>1E3<br>1E4<br>1E5<br>1E6<br>1E7<br>1E8 | 01-0769 - 01-0776<br>01-0777 - 01-0784<br>01-0785 - 01-0792<br>01-0793 - 01-0800<br>01-0801 - 01-0808<br>01-0809 - 01-0816<br>01-0817 - 01-0824<br>01-0825 - 01-0832                                                                                                                                                                                   |

| Target<br>Decimal                                    | Address<br>Hexadecimal                               | Table Reference                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 489<br>490<br>491<br>492<br>493<br>494<br>495<br>496 | 1E9<br>1EA<br>1EB<br>1EC<br>1ED<br>1EE<br>1EF<br>1F0 | $\begin{array}{c} 01\text{-}0833 \text{ - } 01\text{-}0840\\ 01\text{-}0841 \text{ - } 01\text{-}0848\\ 01\text{-}0849 \text{ - } 01\text{-}0856\\ 01\text{-}0857 \text{ - } 01\text{-}0864\\ 01\text{-}0865 \text{ - } 01\text{-}0872\\ 01\text{-}0873 \text{ - } 01\text{-}0880\\ 01\text{-}0881 \text{ - } 01\text{-}0888\\ 01\text{-}0889 \text{ - } 01\text{-}0896\\ \end{array}$ |
| 497                                                  | 1F1                                                  | O1-0897 - O1-0904                                                                                                                                                                                                                                                                                                                                                                      |
| 498                                                  | 1F2                                                  | O1-0905 - O1-0912                                                                                                                                                                                                                                                                                                                                                                      |
| 499                                                  | 1F3                                                  | O1-0913 - O1-0920                                                                                                                                                                                                                                                                                                                                                                      |
| 500                                                  | 1F4                                                  | O1-0921 - O1-0928                                                                                                                                                                                                                                                                                                                                                                      |
| 501                                                  | 1F5                                                  | O1-0929 - O1-0936                                                                                                                                                                                                                                                                                                                                                                      |
| 502                                                  | 1F6                                                  | O1-0937 - O1-0944                                                                                                                                                                                                                                                                                                                                                                      |
| 503                                                  | 1F7                                                  | O1-0945 - O1-0952                                                                                                                                                                                                                                                                                                                                                                      |
| 504                                                  | 1F8                                                  | O1-0953 - O1-0960                                                                                                                                                                                                                                                                                                                                                                      |
| 505                                                  | 1F9                                                  | O1-0961 - O1-0968                                                                                                                                                                                                                                                                                                                                                                      |
| 506                                                  | 1FA                                                  | O1-0969 - O1-0976                                                                                                                                                                                                                                                                                                                                                                      |
| 507                                                  | 1FB                                                  | O1-0977 - O1-0984                                                                                                                                                                                                                                                                                                                                                                      |
| 508                                                  | 1FC                                                  | O1-0985 - O1-0992                                                                                                                                                                                                                                                                                                                                                                      |
| 509                                                  | 1FD                                                  | O1-0993 - O1-1000                                                                                                                                                                                                                                                                                                                                                                      |
| 510                                                  | 1FE                                                  | O1-1001 - O1-1008                                                                                                                                                                                                                                                                                                                                                                      |
| 511                                                  | 1FF                                                  | O1-1009 - O1-1016                                                                                                                                                                                                                                                                                                                                                                      |
| 512                                                  | 200                                                  | O1-1017 - O1-1024                                                                                                                                                                                                                                                                                                                                                                      |
| 513<br>514<br>515<br>516<br>517<br>518<br>519<br>520 | 201<br>202<br>203<br>204<br>205<br>206<br>207<br>208 | $\begin{array}{c} 02\text{-}0001 & - & 02\text{-}0008\\ 02\text{-}0009 & - & 02\text{-}0016\\ 02\text{-}0017 & - & 02\text{-}0024\\ 02\text{-}0025 & - & 02\text{-}0032\\ 02\text{-}0033 & - & 02\text{-}0040\\ 02\text{-}0041 & - & 02\text{-}0048\\ 02\text{-}0049 & - & 02\text{-}0056\\ 02\text{-}0057 & - & 02\text{-}0064 \end{array}$                                           |
| 521                                                  | 209                                                  | O2-0065 - O2-0072                                                                                                                                                                                                                                                                                                                                                                      |
| 522                                                  | 20A                                                  | O2-0073 - O2-0080                                                                                                                                                                                                                                                                                                                                                                      |
| 523                                                  | 20B                                                  | O2-0081 - O2-0088                                                                                                                                                                                                                                                                                                                                                                      |
| 524                                                  | 20C                                                  | O2-0089 - O2-0096                                                                                                                                                                                                                                                                                                                                                                      |
| 525                                                  | 20D                                                  | O2-0097 - O2-0104                                                                                                                                                                                                                                                                                                                                                                      |
| 526                                                  | 20E                                                  | O2-0105 - O2-0112                                                                                                                                                                                                                                                                                                                                                                      |
| 527                                                  | 20F                                                  | O2-0113 - O2-0120                                                                                                                                                                                                                                                                                                                                                                      |
| 528                                                  | 210                                                  | O2-0121 - O2-0128                                                                                                                                                                                                                                                                                                                                                                      |
| 529<br>530<br>531<br>532<br>533<br>534<br>535<br>536 | 211<br>212<br>213<br>214<br>215<br>216<br>217<br>218 | $\begin{array}{c} 02\text{-}0129 - 02\text{-}0136\\ 02\text{-}0137 - 02\text{-}0144\\ 02\text{-}0145 - 02\text{-}0152\\ 02\text{-}0153 - 02\text{-}0160\\ 02\text{-}0161 - 02\text{-}0168\\ 02\text{-}0169 - 02\text{-}0176\\ 02\text{-}0177 - 02\text{-}0184\\ 02\text{-}0185 - 02\text{-}0192\\ \end{array}$                                                                         |
| 537                                                  | 219                                                  | 02-0193 - 02-0200                                                                                                                                                                                                                                                                                                                                                                      |
| 538                                                  | 21A                                                  | 02-0201 - 02-0208                                                                                                                                                                                                                                                                                                                                                                      |
| 539                                                  | 21B                                                  | 02-0209 - 02-0216                                                                                                                                                                                                                                                                                                                                                                      |
| 540                                                  | 21C                                                  | 02-0217 - 02-0224                                                                                                                                                                                                                                                                                                                                                                      |
| 541                                                  | 21D                                                  | 02-0225 - 02-0232                                                                                                                                                                                                                                                                                                                                                                      |
| 542                                                  | 21E                                                  | 02-0233 - 02-0240                                                                                                                                                                                                                                                                                                                                                                      |
| 543                                                  | 21F                                                  | 02-0241 - 02-0248                                                                                                                                                                                                                                                                                                                                                                      |
| 544                                                  | 220                                                  | 02-0249 - 02-0256                                                                                                                                                                                                                                                                                                                                                                      |

r

| Target<br>Decimal                                           | Address<br>Hexadecimal                               | Table Reference                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552        | 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228 | O2-0257 - O2-0264<br>O2-0265 - O2-0272<br>O2-0273 - O2-0280<br>O2-0281 - O2-0288<br>O2-0289 - O2-0296<br>O2-0297 - O2-0304<br>O2-0305 - O2-0312<br>O2-0313 - O2-0320                                                                                                                                                                                   |
| 553<br>554<br>555<br>556<br>557<br>558<br>559<br>560        | 229<br>22A<br>22B<br>22C<br>22D<br>22E<br>22F<br>230 | 02-0321 - 02-0328<br>02-0329 - 02-0336<br>02-0337 - 02-0344<br>02-0345 - 02-0352<br>02-0353 - 02-0360<br>02-0361 - 02-0368<br>02-0369 - 02-0376<br>02-0377 - 02-0384                                                                                                                                                                                   |
| 561<br>562<br>563<br>564<br>565<br>566<br>567<br>568        | 231<br>232<br>233<br>234<br>235<br>236<br>237<br>238 | $\begin{array}{c} 02\text{-}0385 & - & 02\text{-}0392 \\ 02\text{-}0393 & - & 02\text{-}0400 \\ 02\text{-}0401 & - & 02\text{-}0408 \\ 02\text{-}0409 & - & 02\text{-}0416 \\ 02\text{-}0417 & - & 02\text{-}0424 \\ 02\text{-}0425 & - & 02\text{-}0432 \\ 02\text{-}0433 & - & 02\text{-}0440 \\ 02\text{-}0441 & - & 02\text{-}0448 \\ \end{array}$ |
| 569<br>570<br>571<br>572<br>573<br>574<br>575<br>576        | 239<br>23A<br>23B<br>23C<br>23D<br>23E<br>23F<br>240 | $\begin{array}{c} 02\text{-}0449 - 02\text{-}0456\\ 02\text{-}0457 - 02\text{-}0464\\ 02\text{-}0465 - 02\text{-}0472\\ 02\text{-}0473 - 02\text{-}0480\\ 02\text{-}0481 - 02\text{-}0488\\ 02\text{-}0489 - 02\text{-}0488\\ 02\text{-}0489 - 02\text{-}0496\\ 02\text{-}0497 - 02\text{-}0504\\ 02\text{-}0505 - 02\text{-}0512\\ \end{array}$       |
| 577<br>578<br>579<br>580<br>581<br>582<br>583<br>583<br>584 | 241<br>242<br>243<br>244<br>245<br>246<br>247<br>248 | $\begin{array}{c} 02\text{-}0513 - 02\text{-}0520\\ 02\text{-}0521 - 02\text{-}0528\\ 02\text{-}0529 - 02\text{-}0536\\ 02\text{-}0537 - 02\text{-}0544\\ 02\text{-}0545 - 02\text{-}0552\\ 02\text{-}0553 - 02\text{-}0560\\ 02\text{-}0561 - 02\text{-}0568\\ 02\text{-}0569 - 02\text{-}0576\\ \end{array}$                                         |
| 585<br>586<br>587<br>588<br>589<br>590<br>591<br>592        | 249<br>24A<br>24B<br>24C<br>24D<br>24E<br>24F<br>250 | $\begin{array}{r} 02\text{-}0577 - 02\text{-}0584 \\ 02\text{-}0585 - 02\text{-}0592 \\ 02\text{-}0593 - 02\text{-}0600 \\ 02\text{-}0601 - 02\text{-}0608 \\ 02\text{-}0609 - 02\text{-}0616 \\ 02\text{-}0617 - 02\text{-}0624 \\ 02\text{-}0625 - 02\text{-}0632 \\ 02\text{-}0633 - 02\text{-}0640 \\ \end{array}$                                 |

| Torgot                                                      | Address                                              | Table Defenses                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decimal                                                     | Hexadecimal                                          | Table Reference                                                                                                                                                                                                                                                                                                                                  |
| 593<br>594<br>595                                           | 251<br>252<br>253                                    | 02-0641 - 02-0648<br>02-0649 - 02-0656<br>02-0657 - 02-0656                                                                                                                                                                                                                                                                                      |
| 595<br>596<br>597<br>598                                    | 255<br>254<br>255<br>256                             | O2-0657 - O2-0664<br>O2-0665 - O2-0672<br>O2-0673 - O2-0680<br>O2-0681 - O2-0688                                                                                                                                                                                                                                                                 |
| 599<br>600                                                  | 257<br>258                                           | O2-0689 - O2-0696<br>O2-0697 - O2-0704                                                                                                                                                                                                                                                                                                           |
| 601<br>602<br>603<br>604<br>605<br>606<br>607<br>608        | 259<br>25A<br>25B<br>25C<br>25D<br>25E<br>25F<br>260 | $\begin{array}{r} 02-0705 & - & 02-0712 \\ 02-0713 & - & 02-0720 \\ 02-0721 & - & 02-0728 \\ 02-0729 & - & 02-0736 \\ 02-0737 & - & 02-0744 \\ 02-0745 & - & 02-0752 \\ 02-0753 & - & 02-0760 \\ 02-0761 & - & 02-0768 \end{array}$                                                                                                              |
| 609<br>610<br>611<br>612<br>613<br>614<br>615<br>616        | 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268 | $\begin{array}{r} 02-0769 & - & 02-0776 \\ 02-0777 & - & 02-0784 \\ 02-0785 & - & 02-0792 \\ 02-0793 & - & 02-0800 \\ 02-0801 & - & 02-0808 \\ 02-0809 & - & 02-0816 \\ 02-0817 & - & 02-0824 \\ 02-0825 & - & 02-0832 \\ \end{array}$                                                                                                           |
| 617<br>618<br>619<br>620<br>621<br>622<br>623<br>623<br>624 | 269<br>26A<br>26B<br>26C<br>26D<br>26E<br>26F<br>270 | $\begin{array}{c} 02\text{-}0833 - 02\text{-}0840\\ 02\text{-}0841 - 02\text{-}0848\\ 02\text{-}0849 - 02\text{-}0856\\ 02\text{-}0857 - 02\text{-}0856\\ 02\text{-}0857 - 02\text{-}0864\\ 02\text{-}0865 - 02\text{-}0872\\ 02\text{-}0873 - 02\text{-}0880\\ 02\text{-}0881 - 02\text{-}0888\\ 02\text{-}0889 - 02\text{-}0896\\ \end{array}$ |
| 625<br>626<br>627<br>628<br>629<br>630<br>631<br>632        | 271<br>272<br>273<br>274<br>275<br>276<br>277<br>278 | 02-0897 - 02-0904         02-0905 - 02-0912         02-0913 - 02-0920         02-0921 - 02-0928         02-0929 - 02-0936         02-0937 - 02-0944         02-0945 - 02-0952         02-0953 - 02-0960                                                                                                                                          |
| 633<br>634<br>635<br>636<br>637<br>638<br>639<br>640        | 279<br>27A<br>27B<br>27C<br>27D<br>27E<br>27F<br>280 | O2-0961 - O2-0968<br>O2-0969 - O2-0976<br>O2-0977 - O2-0984<br>O2-0985 - O2-0992<br>O2-0993 - O2-1000<br>O2-1001 - O2-1008<br>O2-1009 - O2-1016<br>O2-1017 - O2-1024                                                                                                                                                                             |

## A

Additional Protocols, 7-1

#### B

Bar Code Reader, 7-1, 7-4 Baud Rate, 2-5 Bit Set/Reset, 3-18 Buffer, 3-19

## C

Cable, 2-13 Configuration, 2-13 Specifications, 2-13 Wiring, 2-14 Carriage Return (CR), 7-1 Caution, 3-11 CCM Memory Types, A-1 Communication Errors, 5-14, 6-30 Communication Ports, 2-9 Compatibility, 1-3 Complex Networks, 2-21 Configuration, 1-1 Connector Specification, 2-13 Converter Box, 2-17 CRC, 6-5

## D

Data, 2-5 Flow, 5-11 Format, 5-1 Monitor, 3-21 Monitoring, 3-19 Rate, 2-5 Delay Time, 2-5 Delays, 5-13 Diagnostic Display, 2-8 Diagnostic Status Words, 3-9 DIP Switch, 2-3, 7-3

#### E

Enquiry Sequence, 5-2 Error, 3-15 Check, 6-3 Checking, 3-15 Codes, 3-15 Conditions, 6-32 Response, 6-2 Errors, 5-14

#### $\mathbf{F}$

Flow Charts, 5-5 Force OFF, 3-18 Force ON, 3-18 Function Code, 6-2

## Η

Header Block, 5-10

## Ι

Illegal Network, 2-23 Inputs Definition, 3-4 Installation, 2-1, 2-15 Interface Compatibility, 1-3 Internal Functions, 2-2 Invalid Data, 5-14 Invalid Header, 5-14

## J

Jumper Connection (Shorting Plug), 2-3

## L

LED Description, 2-8 Line Feed (LF), 7-1

Index

GFK-0244

## Μ

Master Station, 2-18 Memory Mapping, 3-1, 4-2 Memory Type, 5-11 Memory Types 2,4, A-1 Memory Types 3,5, A-6 Message, 5-12 Descriptions, 6-10 Fields, 6-2 Format, 6-1 Termination, 5-12 Transfers, 5-10 Types, 6-2 Mode 1, 7-2 Mode 2, 7-2 Mode 3, 7-2 Mode 4, 7-2 Mode 5, 7-2 Mode Types, 7-1 Monitoring Function, 3-20 Multidrop Network, 2-16

ς.

## Ν

Network Configurations, 2-15 Non-Practical Networks, 2-23 Normal Response, 6-2 Normal Sequence, 5-2

## 0

Outputs Definition, 3-7

## P

Physical Layout, 2-1 Programming Examples, 4-4 Protocol, 5-1 Protocol Format, 5-4

## R

Rack Layout, 2-15 Read CCM, 4-3 Read Data, 5-10 Register Definition, 3-2 Remote CCM, 4-4 Request Function, 3-21 Return Buffer, 3-20 RTU protocol, 6-1

## S

Scratch Pad, 3-11 Scratch Pad Notation, 3-11 Selector Switch, 2-8 Serial Link, 5-15 Slave Station, 2-17 Source ID, 5-12 Specifications, 1-2 Station Address, 6-2 Station Addressing, 2-5 Switch Setting, 2-4

## Т

Table Addresses, 6-9 Target ID, 5-11 Text Data Block, 5-12 Timeout, 5-13, 5-15 Turn-Around Times, 6-4

## U

Unformatted Transmitting, 7-3

## W

Wiring, 2-10, 2-11 Write CCM, 4-3 Write Data, 3-17, 5-10

GE Fanuc Automation North America, Inc., Charlottesville, Virginia

GFK-0244B